Digital Signal Processing Reference
In-Depth Information
Time domain
Spectrum
Freq. domain
Ram p
Gen . (V C O)
T ime domain
Spectrum
F req. domain
Ram p
Ge n . (V C O)
Diff.+ Int.
Diff.+ Int.
Time domain
Frequency domain
4
3
2
1
0
-1
-2
-3
-4
5000
0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,00
-0,05
400
350
300
250
200
150
100
50
0
0,0030
0,0025
0,0020
0,0015
0,0010
0,0005
0,0000
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,00
Sweep signal
Amplitude
constant
Differentiated
sweep signal
2500
0
-2500
-5000
0,20
(
2
π
f )
0,13
Integrated
sweep signal
0,05
-0,03
-0,10
4
3
2
1
0
-1
-2
-3
-4
(
1/ 2
π
f )
Differentiated
and integrated
sweep signal
25
75
125
175
225
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
Hz
ms
Illustration 204: Analog filters: differentiation and integration as frequency-dependent processes
In the differentiation of a sweep signal the amplitude increases linearly (proportionally) to the frequency
and in the case of integration it is inversely proportional to the frequency. This can be seen in the Illustra-
tion both in the time and frequency domain. Note the effect of the Uncertainty Principle in the frequency
domain (see in this connection Illustration 104).
In the case of an analog resonance circuit consisting of a coil and a capacitor or an analog bandpass the
voltage u and current i are linked by these two processes differentiation and integration. Only in this way
can the resonance circuit effect be achieved.
The faster the current i in a coil changes the greater the instanta-
neous induced voltage u ( law of induction ).
The faster the voltage u changes at a capacitor the greater the
current i which the condenser discharges or charges ( law of
capacity ).
Search WWH ::




Custom Search