Biology Reference
In-Depth Information
While we agree that both procedures have benefits and
drawbacks, we decided on our approach, because it was impor-
tant in our analyses to provide unambiguous protein expres-
sion evidence for the identified and quantified proteins.
References
1. Agrawal GK, Bourguignon J, Rolland N et al
(2010) Plant organelle proteomics: collaborat-
ing for optimal cell function. Mass Spectrom
Rev 30:772-853
2. Baginsky S (2009) Plant proteomics: concepts,
applications, and novel strategies for data inter-
pretation. Mass Spectrom Rev 28:93-120
3. Liu H, Sadygov RG, Yates JR 3rd (2004) A
model for random sampling and estimation of
relative protein abundance in shotgun pro-
teomics. Anal Chem 76:4193-4201
4. Lu P, Vogel C, Wang R, Yao X et al (2007)
Absolute protein expression profiling estimates the
relative contributions of transcriptional and trans-
lational regulation. Nat Biotechnol 25:117-124
5. Bischof S, Baerenfaller K, Wildhaber T et al
(2011) Plastid proteome assembly without
Toc159: photosynthetic protein import and
accumulation of N-acetylated plastid precursor
proteins. Plant Cell 23:3911-3928
6. Gfeller A, Baerenfaller K, Loscos J et al (2011)
Jasmonate controls polypeptide patterning in
undamaged tissue in wounded Arabidopsis
leaves. Plant Physiol 156:1797-1807
7. Kim J, Rudella A, Ramirez Rodriguez V et al
(2009) Subunits of the plastid ClpPR protease
complex have differential contributions to
embryogenesis, plastid biogenesis, and plant
development in Arabidopsis. Plant Cell
21:1669-1692
8. Reiland S, Finazzi G, Endler A et al (2011)
Comparative phosphoproteome profiling
reveals a function of the STN8 kinase in fine-
tuning of cyclic electron flow (CEF). Proc Natl
Acad Sci USA 108:12955-12960
9. Oberg AL, Vitek O (2009) Statistical design of
quantitative mass spectrometry-based proteomic
experiments. J Proteome Res 8:2144-2156
10. Sadygov RG, Cociorva D, Yates JR (2004)
Large-scale database searching using tandem
mass spectra: looking up the answer in the back
of the topic. Nat Methods 1:195-202
11. Elias JE, Gygi SP (2007) Target-decoy search
strategy for increased confidence in large-scale
protein identifications by mass spectrometry.
Nat Methods 4:207-214
12. Roos FF, Jacob R, Grossmann J et al (2007)
PepSplice: cache-efficient search algorithms for
comprehensive identification of tandem mass
spectra. Bioinformatics 23:3016-3023
13. Eng J, McCormack A, Yates J (1994) An
approach to correlate tandem mass-spectral
data of peptides with amino-acid-sequences in
a protein database. J Am Soc Mass Spectrom
5:976-989
14. Baerenfaller K, Grossmann J, Grobei MA et al
(2008) Genome-scale proteomics reveals
Arabidopsis thaliana gene models and pro-
teome dynamics. Science 320:938-941
15. Baerenfaller K, Hirsch-Hoffmann M, Svozil J
et al (2011) pep2pro: a new tool for compre-
hensive proteome data analysis to reveal infor-
mation about organ-specific proteomes in
Arabidopsis thaliana . Integr Biol (Camb) 3:
225-237
16. Jones AR, Eisenacher M, Mayer G et al (2012)
The mzIdentML data standard for mass
spectrometry-based proteomics results. Mol
Cell Proteomics 11: M111.014381
17. Mallick P, Schirle M, Chen SS et al (2007)
Computational prediction of proteotypic pep-
tides for quantitative proteomics. Nat
Biotechnol 25:125-131
18. Myouga F, Akiyama K, Motohashi R et al
(2010) The Chloroplast Function Database: a
large-scale collection of Arabidopsis Ds/Spm-
or T-DNA-tagged homozygous lines for
nuclear-encoded chloroplast proteins, and their
systematic phenotype analysis. Plant J 61:
529-542
19. Heazlewood JL, Verboom RE, Tonti-Filippini
J et al (2007) SUBA: the Arabidopsis subcellular
database. Nucleic Acids Res 35:D213-D218
20. Yanofsky CM, Bickel DR (2010) Validation of
differential gene expression algorithms: appli-
cation comparing fold-change estimation to
hypothesis testing. BMC Bioinformatics
11(63):2
Search WWH ::




Custom Search