Chemistry Reference
In-Depth Information
Now, using Eqs. (168)-(170), one can simplify this result to
δ ω α γ +
ω k n k n q +
1
π
(8 MN ) 2
ω q
k λ, q λ
2
3
2 k 2
ω k
q 2
ω q
(2)
αγ,ξξ
(2)
γα ,ζζ
¯
¯
×
δ ξζ δ ξ ζ
γα ,ξξ
kq
k 2
ω k
q 2
ω q
δ ω α γ +
ω k n k n q +
1
(188)
π
(12 MN ) 2
(2)
αγ,ξξ
(2)
¯
¯
=
ω q
Recalling Eq. (53) one obtains
(12 MN ) 2
kq
πD 2
k 2
ω k
q 2
ω q
n k n q +
1
R (2)
αβ,α β
=
αα ,γγ δ ω α γ +
ω k δ β β
Q (2)
×
ω q
γ
δ αα
γ
β β,γγ δ ω β γ +
ω k
Q (2)
ω q
ω k (189)
αβ,α β δ ω ββ +
ω k +
δ ω αα +
Q (2)
+
ω q
ω q
where
D 2
ξξ
1
Q (2)
(2)
αα ,ξξ
(2)
β β,ξξ
¯
¯
αβ,α β
(190)
Which is similar to Eq. (173). Since Raman processes can become important only
at high temperatures, one can drop spin transition frequencies in the energy δ -
functions. Next, one can replace summation by integration with the help of Eq.
(174) and introduce the characteristic Raman rate
D 2
24 2 π 3
(2)
k ω k n k ( n k +
=
1)
(191)
2 t
Then R (2)
can be written in the form
αβ,α β
(2)
δ αα
γ
R (2)
Q (2)
Q (2)
2 Q (2)
αβ,α β
αβ,α β =
αα ,γγ δ β β
β β,γγ +
(192)
γ
 
Search WWH ::




Custom Search