Environmental Engineering Reference
In-Depth Information
64.
Roy, A., Eaton, H.C., Cartledge, F.K., and Tittlebaum, M.E. (1992), Solidification/sta-
bilization of hazardous waste: evidence of physical encapsulation, Environmental
Science and Technology , 26, 7, pp. 1349-1353.
65.
Stegemann, J.A. and Coté, P.L. (1991), Investigation of Test Methods for Solidified
Waste Evaluation — A Cooperative Program , Environment Canada Report EPS
3/HA/8, ISBN 0-662-18280-4, Ottawa, Ontario, Canada.
66.
Butler, L.G., Owens, J.W., Cartledge, F.K., Kurtz, R.L., Byerly, G.R., Wales, A.J.,
Bryant, P.L., Emery, E.F., Dowd, B., and Xie, X. (2000), Environmental Science and
Technology , 34, 15, pp. 3269-3275.
67.
Stegemann, J.A. and Shi, C. (1997), Acid resistance of different monolithic binders
and solidified wastes, Waste Materials in Construction: Putting Theory in Practice,
Studies in Environmental Science 71 , J. Goumans, J. Senden, and H. van der Sloot,
Eds., Elsevier Science B.V., Amsterdam, pp. 551-562.
68.
Greenberg, S.A. and Chang, T.N. (1965), Investigation of the colloidal hydrated
calcium silicates. II. Solubility relationships in the calcium oxide-silica-water system
at 25°C, Journal of Physical Chemistry , 69, 1, pp. 182-188.
69.
Scrivener, K.L., Cabiron, J.L., and Letourneux, R. (1999), High-performance con-
cretes from calcium aluminate cements, Cement and Concrete Research , 29, 8, pp.
1215-1223.
70.
Allison, J.D., Brown, D.S., and Novo-Gradac, K.J. (1990). MINTEQA2/ PRODEFA2
— A geochemical assessment model for environmental systems. Version 3.0 user's
manual. Environmental Research Laboratory, Office of Research and Development,
U.S. Environmental Protection Agency, Athens, GA.
71.
Greenfield, B.F., Ilett, D.J., Ito, M., McCrohon, R., Heath, T.G., Tweed, C.J., Williams,
S.J., and Yui, M. (1998), The effect of cement additives on radionuclide solubilities,
Radiochimica Acta , 82, pp. 27-32.
72.
Cocke, D.L. and Mollah, M.Y. (1993), The chemistry and leaching mechanisms of
hazardous substances in cementitious solidification/stabilization systems, in Chemis-
try and Microstructure of Solidified Waste Forms , R.D. Spence, Ed., Lewis Publishers,
Boca Raton, FL, pp. 187-242.
73.
Roy, A., Eaton, H.C., Cartledge, F.K., and Tittlebaum, M.E. (1991), Solidification
stabilization of a heavy-metal sludge by a Portland-cement fly-ash binding mixture,
Hazardous Waste & Hazardous Materials , 8, 1, pp. 33-41.
74.
Scheidegger, A.M., Wieland, E., Scheinost, A.C., Dahn, R., and Spieler, P. (2000),
Spectroscopic evidence for the formation of layered Ni-Al double hydroxides in
cement, Environmental Science and Technology , 34, 21, pp. 4545-4548.
75.
Johnson, C.A. and Glasser, F.P. (2002), Hydrotalcite-like minerals (M2Al(OH)(6)
(CO3)(0.5).XH2O, where M = Mg, Zn, Co, Ni) in the environment: synthesis, char-
acterization and thermodynamic stability, Clays and Clay Minerals , 51, 1, p. 108.
76.
Hsiao, M.C., Wang, H.P., and Yang, Y.W. (2001), EXAFS and XANES studies of
copper in a solidified fly ash, Environmental Science and Technology , 35, 12, pp.
2532-2535.
77.
Johnson, C.A. (2002), Metal Binding in the Cement Matrix: an Overview of our
Current Knowledge , Department of Water Resources and Drinking Water, Water-Rock
Interaction Group, EAWAG, for Cemsuisse, Switzerland.
78.
Wieland, E., Bonhoure, I., Fujita, T., Tits, J., and Scheidegger, A.M. (2003), Combined
wet chemistry and EXAFS studies on the radionuclide immobilisation by cement and
calcium silicate hydrates, Geochimica et Cosmochimica Acta , 67, 18, pp. A532-A532.
Search WWH ::




Custom Search