Information Technology Reference
In-Depth Information
18. Ozkol, I., Komurgoz, G.: Determination of the optimum geometry of the heat exchanger
body via a genetic algorithm. Numerical Heat Transfer, Part A 48, 283-296 (2005)
19. Gholap, A.K., Khan, J.A.: Design and multi-objective optimization of heat exchangers for
refrigerators. Applied Energy 84, 1226-1239 (2007)
20. Allen, B., Gosselin, L.: Optimal geometry and flow arrangement for minimizing the cost
of shell-and-tube condensers. Int. J. Energy Res. (2008), doi:10.1002/er.1398
21. Wildi-Tremblay, P., Gosselin, L.: Minimizing shell-and-tube heat exchanger cost with ge-
netic algorithms and considering maintenance. Int. J. Energy Res. 31, 867-885 (2007)
22. Agarwal, A., Gupta, S.K.: Jumping gene adaptations of NSGA-II and their use in the
multi-objective optimal design of shell and tube heat exchangers. Chemical Engineering
Research and Design 86, 123-139 (2008)
23. Doodman, A., Fesanghary, M., Hosseini, R.: A robust stochastic approach for design op-
timization of air cooled heat exchangers. Applied Energy (2008), doi:10.1016/
j.apenergy.2008.08.021
24. Wikipedia, heat pipe (2004) (accessed October 25, 2008),
http://en.wikipedia.org/wiki/Heat_pipe
25. What is a Heat Pipe? (2008) (accessed October 25, 2008),
http://www.cheresources.com/htpipes.shtml
26. Geem, Z.W., Hwangbo, H.: Application of harmony search to multi-objective optimization
for satellite heat pipe design. In: Proceedings of the US-Korea Conference on Science,
Technology, and Entrepreneurship (UKC 2006), CD-ROM (2006)
27. Rajesh, V.G., Ravindran, K.P.: Optimum heat pipe design: A nonlinear programming ap-
proach. International Communications in Heat and Mass Transfer 24, 371-380 (1997)
28. Wikipedia, economic dispatch (2005) (accessed October 25, 2008),
http://en.wikipedia.org/wiki/Economic_dispatch
29. Lin, C.E., Chen, S.T., Huang, C.L.: A direct Newton-Raphson economic dispatch. IEEE
Trans. Power Syst. 7, 1149-1154 (1992)
30. Lin, C.E., Viviani, G.L.: Hierarchical economic dispatch for piecewise quadratic cost func-
tions. IEEE Trans. Power App. Syst. 103, 1170-1175 (1984)
31. Wood, A.J., Wollenberg, B.F.: Power generation, operation and control. Wiley, New York
(1994)
32. Yang, H.T., Chen, S.L.: Incorporating a multi-criteria decision procedure into the com-
bined dynamic programming/production simulation algorithm for generation expansion
planning. IEEE Trans. Power Syst. 4, 165-175 (1989)
33. Granville, S.: Optimal reactive dispatch through interior point methods. IEEE Trans.
Power Syst. 9, 136-146 (1994)
34. Chen, C.L., Wang, S.C.: Branch-and-bound scheduling for thermal generating units. IEEE
Trans. Energy Convers. 8, 184-189 (1993)
35. Liang, Z.X., Glover, J.D.: A zoom feature for a dynamic programming solution to eco-
nomic dispatch including transmission losses. IEEE Trans. Power Syst. 7, 544-550 (1992)
36. Papageorgiou, L.G., Fraga, E.S.: A mixed integer quadratic programming formulation for
the economic dispatch of generators with operating zones. Electric Power Syst. Res. 77,
1292-1296 (2007)
37. Kuo, C.C.: A novel string structure for economic dispatch problems with practical con-
straints. Energy Convers. Manage (2008), doi:10.1016/j.enconman.2008.07.007
38. Li, F.: A comparison of genetic algorithms with conventional techniques on a spectrum of
power economic dispatch problems. Expert Syst. Appl. 15, 133-142 (1998)
39. Baskar, S., Subbaraj, P., Rao, M.V.C.: Hybrid real coded genetic algorithm solution to
economic dispatch problem. Comput. Electr. Eng. 29, 407-419 (2003)
Search WWH ::




Custom Search