Biology Reference
In-Depth Information
Hastings, I.M., (1994). Selfish DNA as a method of pest control. Proc. Trans. R. Soc. Lond. B 344 :
313-324.
Hazelrigg., T., (2000). GFP and other reporters. In: Sullivan, W., Ashburner, M., and Hawley, R.S.,
Eds., Drosophila Protocols , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp.
313-343.
Henikoff, S., (1998). Conspiracy of silence among repeated transgenes. Bioessays 20 : 532-535.
Hickey, D.A., (1982). Selfish DNA: a sexually transmitted nuclear parasite. Genetics 101 : 519-535.
Horn, C., and Wimmer, E.A., (2000). A versatile vector set for animal transgenesis. Dev. Genes Evol.
210 : 630-637.
Horn, C., Jannich, B., and Wimmer, E.A., (2000). Highly sensitive, fluorescent transformation
marker for Drosophila transgenesis. Dev. Genes Evol. 210 : 623-629.
Horn, C., Schmid, B.G.M., Pogoda, F.S., and Wimmer., E.A., (2002). Fluorescent transformation
markers for insect transgenesis. Insect Biochem. Mol. Biol. 32 : 1221-1235.
Houck, M.A., (1993). Mites as potential horizontal transfer vectors of eukaryotic mobile genes:
Proctolaelaps regalis as a model. In: Houck, M.A., Ed., Mites: Ecological and Evolutionary
Analyses of Life-History Patterns . Chapman and Hall, New York, pp. 45-69.
Houck, M.A., Clark, J.B., Peterson, K.R., and Kidwell, M.G., (1991). Possible horizontal transfer of
Drosophila genes by the mite Proctolaelaps regalis . Science 253 : 1125-1129.
Hoy, M.A., (2000). Deploying transgenic arthropods in pest management programs: Risks
and realities. In: Handler, A.M., and James, A.A., Eds., Insect Transgenesis. Methods and
Applications , CRC Press, Boca Raton, FL, pp. 335-337.
Huvenne, H., and Smagghe, G., (2010). Mechanisms of dsRNA uptake in insects and potential for
RNAi for pest control: a review. J. Insect Physiol. 56 : 227-235.
Isalan, M., (2012). Zinc-finger nucleases: how to play with two good hands. Nat. Methods 9 :
32-34.
Ivics, Z., Kaufman, C.D., Zayed, H., Misley, C., Walisko, O., and Izsvak, Z., (2004). The Sleeping
Beauty transposable element: evolution, regulation and genetic applications. Curr. Issues Mol.
Biol. 6 : 43-56.
Jasinskiene, N., Coates, C.J., Benedict, M.Q., Cornel, A.J., Rafferty, C.S., and James, A.A., et al.
(1998). Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes
element from the housefly. Proc. Natl. Acad. Sci. USA 95 : 3743-3747.
Jasinskiene, N., Coats, C.J., and James, A.A., (2000). Structure of Hermes integrations in the
germline of the yellow fever mosquito, Aedes aegypti . Insect Mol. Biol. 9 : 11-18.
Kaiser, K., and Goodwin, S.F., (1990). “Site-selected” transposon mutagenesis of Drosophila . Proc.
Natl. Acad. Sci. USA 87 : 1686-1690.
Karess, R.E., (1987). P element mediated germline transformation of Drosophila . In: Glover, D.M.,
Ed., DNA Cloning Volume II. A Practical Approach . IRL Press, Oxford, UK, pp. 121-141.
Karess, R.E., and Rubin, G.M., (1984). Analysis of P transposable element functions in Drosophila .
Cell 38 : 135-146.
Kempken, F., and Windhofer, F., (2001). The hAT family: a versatile transposon group common to
plants, fungi, animals, and man. Chromosoma 110 : 1-9.
Khurana, J.S., Wang, J., Xu, J., Koppetsch, B.S., Thomson, T.C., and Nowosielska, A., et al.
(2011). Adaptation to P element transposon invasion in Drosophila melanogaster . Cell 147 :
1551-1563.
Kidwell, M.G., (1992). Horizontal transfer of P elements and other short inverted repeat
transposons. Genetica 86 : 275-286.
Kidwell, M.G., and Lisch, D., (1997). Transposable elements as sources of variations in animals and
plants. Proc. Natl. Acad. Sci. USA 94 : 7704-7711.
Kilby, N.J., Snaith, M.R., and Murray, J.A.H., (1993). Site-specific recombinases: tools for genome
engineering. Trends Genet. 9 : 413-421.
Search WWH ::




Custom Search