Chemistry Reference
In-Depth Information
(16) W. Wang, W. Xiong, M. Zhao, W. Sun, F. Li and L. Yuan, Chiral separation of trans-
stilbene oxide through cellulose acetate butyrate membrane. Tetrahedron: Asymmetry, 20,
1052-1056 (2009).
(17) J. Landaburu-Aguirre, V. Garc ıa, E. Pongracz and R. L. Keiski, The removal of zinc from
synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments.
Desalination, 240, 262-269 (2009).
(18) E. Sampera, M. Rodr ıgueza, M. A.de la Rubia and D. Prats, Removal of metal ions at
low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl
sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol., 65, 337-342
(2009).
(19) M. Mohsen-Nia, P. Montazeri and H. Modarress, Removal of Cu2þ and Ni2þ from
wastewater with a chelating agent and reverse osmosis processes. Desalination, 217,
276-281 (2007).
(20) L. N. Zhang, Y. J. Wu, X. Y. Qu, Z. S. Li and J. R. Ni, Mechanism of combination membrane
and electro-winning process on treatment and remediation of Cu2þ polluted water body.
J. Environ. Sci., 21, 764-769 (2009).
(21) B. K. C. Chan and A. W. L. Dudeney, Reverse osmosis removal of arsenic residues from
bioleaching of refractory gold concentrates. Miner. Eng., 21, 272-278 (2008).
(22) U. Ipek, Removal of Ni(II) and Zn(II) from an aqueous solution by reverse osmosis.
Desalination, 174, 161-169 (2005).
(23) E. Dialynas and E. Diamadopoulos, Integration of a membrane bioreactor coupled with
reverse osmosis for advanced treatment of municipal wastewater. Desalination, 238, 302-311
(2009).
(24) A. Figoli, A. Cassano, A. Criscuoli, M. S. I. Mozumder, M. T. Uddin, M. A. Islam and
E. Drioli, Influence of operating parameters on the arsenic removal by nanofiltration. Water
Res., 44, 97-104 (2010).
(25) E. Csefalvay, V. Pauer and P. Mizsey, Recovery of copper from process waters by nano-
filtration and reverse osmosis. Desalination, 240, 132-142 (2009).
(26) F. N. Liu, G. L. Zhang, Q. Meng and H. Z. Zhang, Performance of nanofiltration and
reverse osmosis membranes in metal effluent treatment. Chin. J. Chem. Eng., 16, 441-445
(2008).
(27) S. K. Nataraj, K. M. Hosamani and T. M. Aminabhavi, Potential application of an electro-
dialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination,
217, 181-190 (2007).
(28) J. Lambert, M. Avila-Rodriguez, G. Durand and M. Rakib, Separation of sodium ions from
trivalent chromium by electrodialysis using monovalent cation selective membranes.
J. Membr. Sci., 280, 219-225 (2006).
(29) T. Mohammadi, A. Razmi and M. Sadrzadeh, Effect of operating parameters on Pb2þ
separation from wastewater using electrodialysis. Desalination, 167, 379-385 (2004).
(30) E. Paquaya, A.-M. Clarinvalb, A. Delvauxc, M. Degrezd and H. D. Hurwitz, Applications of
acid picking wastewater treatment. Chem. Eng. J., 79, 197-201 (2000).
(31) J. Pierard, E. Paquaya and M. Degrezd, Recycling by electrodialysis: from lab to industrial
applications. Desalination, 149, 393-398 (2002).
(32) O. D. Linnikov, E. A. Anokhina and V. E. Scherbakov, Investigation on purification of
hydrochloric acid by membrane method. Desalination, 132, 299-306 (2000).
(33) J. Xu, S. Lu and D. Fu, Recovery of hydrochloric acid from the waste acid solution by
diffusion dialysis. Journal of Hazardous Materials, 165, 832-837 (2009).
(34) M.-S. Kang, K. Yoo, S.-J. Oh and S.-H. Moon, A lumped parameter model to predict
hydrochloric acid recovery in diffusion dialysis. Journal Membrane Science, 188, 61-70
(2001).
Search WWH ::




Custom Search