Chemistry Reference
In-Depth Information
(272) Adipic Acid, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons:
Hoboken, NJ, pp. 553-581 (2007).
(273) A. Castellan, J. C. J. Bart and S. Cavallaro, Industrial production and use of adipic acid. Catal
Today, 9, 237-254 (1991).
(274) R. A. Reimer, C. S. Slaten, M. Seapan, M. W. Lower and P. E. Tomlinson, Abatement of N 2 O
emissions produced in the adipic acid industry. Environ Prog, 13, 134-137 (1994).
(275) Y. Q. Deng, Z. F. Ma, K. Wang and J. Chen, Clean synthesis of adipic acid by direct oxidation
of cyclohexene with H2O2 over peroxytungstate - organic complex catalysts. Green Chem.,
1, 275-276 (1999).
(276) K. Sato, M. Aoki, M. Ogawa, T. Hashimoto and R. Noyori, A practical method for
epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions.
J. Org. Chem., 61, 8310-8311 (1996).
(277) P. R. Patnaik, Multi-unit integration in microfluidic processes: current status and future
horizons. Int. J. Bioautomation, 15, 77-84 (2011).
(278) C. Cremers, A. Pelz, U. Stimming, K. Haas-Santo, O. Goerke, P. Pfeifer and K. Schubert,
Micro-structured methane steam reformer with integrated catalytic combustor. Fuel Cells
Bull., 7, 91-98 (2007).
(279) A. M. Karim, J. A. Federici and D. G. Vlachos, Portable power production from methanol
in an integrated thermoeletric/microreactor system. J. Power Sources, 179, 113-120
(2008).
(280) T. Honda, M. Miyazaki, Y. Yamaguchi, H. Nakamura and H. Maeda, Integrated microreaction
system for optical resolution of racemic amino acids. Lab Chip, 7, 366-372 (2007).
(281) W. N. Lau, K. L. Yeung and R. Martin-Aranda, Knoevenagel condensation reaction between
benzaldehyde and ethyl acetoacetate in microreactor and membrane microreactor. Micro-
porous and Mesoporous Mater., 115, 156-163 (2008).
(282) W. N. Lau, K. L. Yeung, X. F. Zhang and R. Martin-Aranda, Zeolite membrane microrectors
and their performance. Stud. Surf. Sci. Catal., 170B, 1460-1465 (2007).
(283) J. P. McMullen and K. F. Jensen, Integrated microreactors for reaction automation: new
approaches to reaction development. Annu. Rev. Anal. Chem., 3, 19-42 (2010).
(284) W. C. Shin, An integrated micro chemical reactor system with effective control strategies.
Dissertation Abstracts International, DAI/B 68-03 (2007).
(285) D. J. Quiram, K. F. Jensen, M. A. Schmidt, P. L. Mills, J. F. Ryley, M. D. Wetzel and D. J.
Kraus, Integrated microreactor system for gas-phase catalytic reactions. 1. Scale-up micro-
reactor design and fabrication, Ind. Eng. Chem. Res., 46, 8292-8305 (2007).
(286) D. J. Quiram, K. F. Jensen, M. A. Schmidt, P. L. Mills, J. F. Ryley, M. D. Wetzel and D. J.
Kraus, Integrated microreactor system for gas phase reactions, in Micro Instrumentation,
M. V. Koch, K. VandenBusche and R. W. Chrisman (Eds.), pp. 363-406 (2007).
(287) K. Shah and R. S. Besser, Understanding thermal integration issues and heat loss pathways in
a planar microscale fuel processor: demonstration of an integrated silicon microreactor-based
methanol steam reformer. Chem. Eng. J., 135, S46-S56 (2008).
(288) K. Shah and R. S. Besser, Key issues in the microchemical systems-based methanol fuel
processor: energy density, thermal integration, and heat loss mechanisms. J. Power Sources,
166, 177-193 (2007).
(289) D. J. Quiram, K. F. Jensen, M. A. Schmidt, P. L. Mills, J. F. Ryley, M. D. Wetzel and
D. J. Kraus, Integrated microreactor system for gas-phase catalytic reactions. 3. Micro-
reactor system design and system automation. Ind. Eng. Chem. Res., 46, 8319-8335
(2007).
(290) V. Hessel, C. Hofmann, H. Lowe, A. Meudt, S. Scherer, F. Schonfeld and B. Werner,
Selectivity gains and energy savings for the industrial phenyl boronic acid process using
micromixer/tubular reactors. Org. Proc. Res. Dev., 8, 511-523 (2004).
Search WWH ::




Custom Search