Geoscience Reference
In-Depth Information
IF t 1 <t 2
THEN
Step 6.
X par .e/ WDf v i g[f v j g[ f v i ;v j g ;.t 1 ;t 2 /
X par .e/ WDf v i g[f v j g
ELSE
X par .e/
To analyze the complexity of this algorithm, we need the following definition: A
Output:
point x D f v i ;v j g ;t , t 2 Œ0;1 on one edge e Df v i ;v j g is called a bottleneck
point for f q if there exists a vertex v k with w k >0, such that
d.v k ;x/ D d.v k ;v i / C d.v i ;x/ D d.v k ;v j / C d.v j ;x/:
Let B ij denote the set of bottleneck points on the edge f v i ;v j g . Note that j B ij jj V j :
If D is given, the only non constant operation in Algorithm 9.4 is the com-
putation of t 1 and t 2 .Toplotf q we have to determine the breakpoints of f q
which is piecewise linear on an edge. Since these breakpoints correspond to the
bottleneck points on this edge we have to compute B ij for e Df v i ;v j g .This
can be done in O. j V j log j V j / (see Hansen et al. 1991 ). Then t 1 and t 2 can be
determined by exploring the sorted list of bottleneck points two times. The total
complexity for finding
X par .e/ is O. j V j log j V j / and the total complexity for
finding S e2E X par .e/ is O. j E jj V j log j V j / (Fig. 9.17 ).
Example 9.8 Consider the network in Fig. 9.17 with distance matrix
0
@
1
A
0122
1021
2201
2110
D D
:
1
1
3
2
1
v 1
v 2
2
1
2
2
2
1
Fig. 9.17 Network of
Example 9.8
v 3
v 4
1
 
Search WWH ::




Custom Search