Information Technology Reference
In-Depth Information
Theorem 3. For n =2 m
4 and any positive integer k satisfying Equation
(2), the weight distribution of the nonbinary Kasami codes
k is given as follows:
C
Table 2. The weight distribution of code C k
Weight
Frequency
0
1
( p − 1) p n 1
( p n 1)(1 + p n 2 d ( p m + d − p m + p m 1 + p m d 1))
n
2
2 )
n
2
2 ) / (2 p d +2)
( p − 1)( p n 1 − p
p d ( p m +1)( p n 1)( p n 1 +( p − 1) p
n 2
2 )
n + d
n
d
n 2
2 )
p
2 p
+ p
( p − 1)( p n 1 + p
( p m 1)( p n 1 ( p − 1) p
d
2( p
1)
n
2
n
2
2 ) / (2 p d +2)
( p − 1) p n 1 + p
p d ( p m +1)( p n 1)( p − 1)( p n 1 − p
2
n 2
2
n + d
n
d
n 2
2 )
( p − 1) p n 1 − p
p
2 p
+ p
( p m 1)( p − 1)( p n 1 + p
d
2( p
1)
n + d
1
n d
1
( p − 1) p n 1 − p
p m d ( p n 1)( p − 1)( p n d 1 + p
) / 2
2
2
n + d 1
2
n d 1
2
( p − 1) p n 1 + p
p m d ( p n 1)( p − 1)( p n d 1 − p
) / 2
m d
n +2 d 2
2
n
n 2 d 2
2
( p
1)( p
1)
( p − 1)( p n 1 + p
( p n 2 d 1 ( p − 1) p
)
)
2 d
p
1
n +2 d
2
m d
n
n
2 d
2
( p
1)( p
1)
( p − 1) p n 1 − p
( p − 1)( p n 2 d 1 + p
)
2
2
2 d
p
1
It will be proven by the techniques developed in the next two sections.
3 Rank Distribution of Quadratic Form
Π γ,δ (
x
)
This section investigates the rank distribution of the quadratic form Π γ,δ ( x )
defined by (1) for either γ
=0or δ
=0.
Lemma 4 (Theorems 5.4 and 5.6 of [1]). Let h c ( x )= x p s +1
F p l .
cx + c , c
Then h c ( x )=0 has either 0 , 1 , 2 ,or p gcd( s,l ) +1 roots in
F p l . Further, let N 1
F p l such that h c ( x )=0 has exactly one solution in
F p l ,then N 1 = p l− gcd( s,l ) and if x 0 F p l is the unique solution of the equation,
denote the number of c
p l
1
p gcd( s,l )
then ( x 0
1)
=1 .
1
Proposition 5. Let g δ,γ ( y )= δ p n k y p m k +1 + γy + δ with γδ
=0 ,and d be
defined as in (2). Then
(1) The equation g δ,γ ( y )=0 has either 0 , 1 , 2 ,or p d +1 roots in
F p n ;
(2) If y 1 , y 2 F p n are different solutions of g δ,γ ( y )=0 ,then ( y 1 y 2 ) p n 1
=1 ;
p d
1
p n
1
p d
(3) If g δ,γ ( y )=0 has exactly one solution y 0 F p n ,then y
1
=1 .
0
γ p m k +1
δ p m k ( p m +1) .Then g δ,γ ( y ) = 0 becomes
δ
γ x and c =
Proof. (1) Let y =
x p m k +1
cx + c =0 .
(4)
Search WWH ::




Custom Search