Information Technology Reference
In-Depth Information
Let the Boolean function f : V
V
F 2 be given by
f ( x 1 ,...,x m ,y 1 ,...,y m )= σ ( x 1 ,...,x m )
·
( y 1 ,...,y m )+ g ( x 1 ,...,x m ) ,
(1)
where σ : V
V is of the form
σ ( x 1 ,...,x m )=( ψ 1 ( x 1 ) 1 ( x 1 )+ ψ 2 ( x 2 ) ,...,φ m− 1 ( x m− 1 )+ ψ m ( x m ))
and g : V
F 2 is defined by
g ( x 1 ,...,x m )= h 1 ( x 1 )+ h 2 ( x 2 )+
···
+ h m ( x m ) .
Here, ψ 1 ,...,ψ m 1 ,...,φ m− 1 are permutations on V n and h 1 ,...,h m : V n
F 2 are arbitrary Boolean functions. Explicitly, f reads
f ( x 1 ,...,x m ,y 1 ,...,y m )
m
= ψ 1 ( x 1 )
·
y 1 + h 1 ( x 1 )+
( y j
·
[ φ j− 1 ( x j− 1 )+ ψ j ( x j )] + h j ( x j )) .
j =2
Since σ is a permutation, f belongs to the Maiorana-McFarland class, and is
therefore bent. In the next theorem, we will identify configurations of σ and g
so that f is also negabent.
Theorem 4. Let m be a positive integer satisfying m
1(mod3) ,andlet k
be an integer satisfying 0 <k<m and k
0(mod3) or ( m
k )
1(mod3) .
Let f be as in (1), where
σ ( x 1 ,...,x m )=( x 1 ,x 1 + x 2 ,...,x k− 1 + ψ ( x k ) ( x k )+ x k +1 ,...,x m− 1 + x m )
g ( x 1 ,...,x m )= h ( x k ) ,
ψ, φ are permutations on V n ,and h : V n F 2 is an arbitrary Boolean function.
(In other words, ψ 1 ,...,ψ m 1 ,...,φ m− 1 are identity maps except for ψ := ψ k
and φ := φ k ,and h 1 ,...,h m are zero except for h := h k .) Then f is bent-
negabent.
A lemma is required to prove the theorem.
Lemma 5. Let s be a nonnegative integer. For any u 1 ,...,u s ,z s +1
V n define
s
1) ( z j +1 + u j ) ·z j i wt( z j ) ,
E s ( z s +1 ):=
(
j =1
z j ∈V n
where an empty product is defined to be equal to 1 . Then we have
2 sn/ 2 ω c (
1) a·z s +1
s
if
0(mod3)
E s ( z s +1 )=
2 sn/ 2 ω c (
1) a·z s +1 i wt( z s +1 )
if
s
1(mod3)
2 ( s +1) n/ 2 ω c δ z s +1 + a
if
s
2(mod3)
for some c
V n .Here δ a denotes the Kronecker delta function, i.e.,
δ a equals 1 if a =0 andiszerootherwise.
Z 8 and a
Search WWH ::




Custom Search