Information Technology Reference
In-Depth Information
f W is bent. By direct calculation,
Proof. We first prove that
2
x
1) f W ( x,v )+ u·x + v·w
( f W )( u, w )=2
n
H
(
U
v
W
n + k
2
=2
1) f ( x,y )+ v·y + u·x + v·w
(
x
U
v
W
y
W
1) f ( x,y )+ u·x
v
n + k
2
=2
1) ( y + w ) .
(
(
x
U
y
W
W
The inner sum is zero unless y = w , in which case it is 2 k . Hence,
( f W )( u, w )=2
n−k
2
1) f ( x,w )+ u·x
H
(
x∈U
=
H U ( f )( u, w ) .
|H U ( f )( u, w )
|
=1foreach u
U and each w
W . Therefore,
By assumption,
f W is bent.
Next we prove that
f W is negabent. We have
( f W )( u, w )=2 2
x∈U
1) f W ( x,v )+ u·x + v·w i wt( v )+wt( x )
N
(
v∈W
=2 n + k
1) f ( x,y )+ v·y + u·x + v·w i wt( v )+wt( x )
(
2
x
U
v
W
y
W
1) f ( x,y )+ u·x i wt( x )
v∈W
=2 n + k
1) ( y + w ) i wt( v ) .
(
(
2
x∈U
y∈W
The inner sum can be computed with Lemma 1. We therefore obtain
2 ω k
x
( f W )( u, w )=2
n
1) f ( x,y )+ u·x i wt( x ) i wt( y + w )
N
(
U
y
W
=2 2 ω k i wt( w )
x∈U
1) f ( x,y )+ u·x + y·w i wt( x ) wt( y )
(
y∈W
= ω k i wt( w )
( f )( u, w ) ,
where ω =(1+ i ) / 2and w is the complement of w .Since f is negabent, this
shows that
N
f W is also negabent.
4Con ru ons
Throughout this section we use the following notation. Define V to be an mn -
dimensional vector space over
F 2 ,sothat
V = V n
V n ⊕···⊕
V n
.
m times
Search WWH ::




Custom Search