Information Technology Reference
In-Depth Information
=(0 m 0 1 m 1 ...n m n ):
We now associate several coecients with λ =
{{
λ 1 ,...,λ k }}
A ( λ )= n
λ 1 ,...,λ k
B ( λ )=
k
m 0 ,m 1 ,...,m n
C ( λ )= A ( λ ) B ( λ ) m 0 !
k ! D ( λ )= k !
m 0 !
Now let us define the L (loosen) and R (roughen) operators:
L :( x 1 ,...,x k )
→{{
x 1 ,...,x k }}
R :( y 1 ,...,y k )
(
|
y 1 |
,...,
|
y k |
)
Theorem. As summarized in the diagram below,
(a) For all c
C ,
R 1 ( c )
|
|
= A ( c ).
P ,
L 1 ( λ )
(b) For all λ
|
|
= B ( λ ).
P ,
R 1 ( λ )
(c) For all λ
|
|
= C ( λ ).
,
P
L 1 ( π )
(d) For all π
|
|
= D ( π ).
L
C
−→ P
|
|
R
R
L
C
P
−→
Corollaries
f [ π ]=
λ∈P n
C ( λ ) f [ λ ]
π∈ P n
f [ α ]=
c
A ( c ) f [ c ]=
λ
A ( λ ) B ( λ ) f [ λ ]
α
C n
C n
P n
.
6
Illustrative Example
In this section we will illustrate in some detail one of the entries given in Table 2.
Specifically, given a Taylor series F ( z ) and assuming F (0) = 1, we seek the Taylor
coecients for G ( z )= F ( z ) 2 , i.e.,
g [ n ]:= x n
n !
F ( z ) 2 ,
for n
0.
According to Table 2A,
f [
g [ n ]=
α∈ C n
2
|
α 1 |
]
···
f [
|
α k |
] ,
(4)
|
α
|
Search WWH ::




Custom Search