Information Technology Reference
In-Depth Information
1. for τ =2 τ 1 ,
v i ( t + τ )= ϕ ( a i ( t + τ 1 )) ,
i< 2 n− 1
ϕ ( a i ( t + τ 1 )+3) , 2 n− 1
0
i< 2 n ;
2. for τ =2 τ 1 +1 ,
v i ( t + τ )= ϕ ( a i +2 n 1 ( t + τ 1 +2 n− 1 )) ,
i< 2 n− 1
ϕ ( a i− 2 n 1 ( t + τ 1 +2 n− 1 )+1) , 2 n− 1
0
i< 2 n .
Proof : According to Lemma 5, Remark 1, and the definition of the modified
Graymap,thecaseof τ =2 τ 1 is straightforward. Hereafter we only prove the
result for τ =2 τ 1 +1.
When 0
i< 2 n− 1 , a i +2 n 1 ( t + τ 1 +2 n− 1 )= Tr 1 ((1 + 2 η i +2 n 1 ) β t + τ 1 +2 n 1 ).
Applying Lemma 5, we have
ϕ ( a i +2 n 1 ( t + τ 1 +2 n− 1 ))
= tr 1 ( ζ i +2 n 1 α t 1 + τ 1 +2 n 1 )+ p ( α t 1 + τ 1 +2 n 1 ) ,t =2 t 1
tr 1 ((1 + ζ i +2 n 1 ) α t 1 + τ 1 +2 n )+ p ( α t 1 + τ 1 +2 n ) ,t =2 t 1 +1
= tr 1 ((1 + ζ i ) α t 1 + τ 1 +2 n 1 )+ p ( α t 1 + τ 1 +2 n 1 ) ,t =2 t 1
tr 1 ( ζ i α t 1 + τ 1 +1 )+ p ( α t 1 + τ 1 +1 ) ,
t =2 t 1 +1
= v i ( t + τ ) ,
i< 2 n− 1 .
wherewemakeuseofthefactthat ζ i +2 n 1 =1+ ζ i ,0
i< 2 n ,then
a i− 2 n 1 ( t + τ 1 +2 n− 1 )+1= Tr 1 ((1 + 2 η i− 2 n 1 ) β t + τ 1 +2 n 1 )+1 .
Applying Lemma 5 and (4) to a i− 2 n 1 +1,wenowhave
When 2 n− 1
ϕ ( a i− 2 n 1 ( t + τ 1 +2 n− 1 )+1)
= tr 1 ( ζ i− 2 n 1 α t 1 + τ 1 +2 n 1 )+ p ( α t 1 + τ 1 +2 n 1 )+ tr 1 ( α t 1 + τ 1 +2 n 1 ) ,t =2 t 1
tr 1 ( ζ i− 2 n 1 α t 1 + τ 1 +2 n )+ p ( α t 1 + τ 1 +2 n )+1 ,
t =2 t 1 +1
= tr 1 ((1 + ζ i− 2 n 1 ) α t 1 + τ 1 +2 n 1 )+ p ( α t 1 + τ 1 +2 n 1 ) ,t =2 t 1
tr 1 ( ζ i− 2 n 1 α t 1 + τ 1 +1 )+ p ( α t 1 + τ 1 +1 )+1 ,
t =2 t 1 +1
= v i ( t + τ ) .
Proof of Theorem 6 : We investigate the following 7 cases for computing the
correlation function:
i = j< 2 n and τ =0.
This is trivial case, R i,i (0) = 2(2 n
Case 1 .0
1).
= j< 2 n− 1 or 2 n− 1
= j< 2 n )and τ =0.
Case 2 .(0
i
i
In this case,
R i,j ( τ )=2(
x∈ F 2 n
1) tr 1 ( ζ i + ζ j ) x
(
1)
=
2 ,
Search WWH ::




Custom Search