Information Technology Reference
In-Depth Information
n 1
2
i =0
n 1
2
i =0
n− 1
B 2 ( j +1) l
n−
B 2 ( j 2 i ) l
n
B 2 l
n−
B 2 (2 i +1) l
n
( a )
( a )
1 ( a )
( a )
1
=Tr ne
e
=
B 2 l +1
B 2 ( j +1) l +2 jl
( a )
( a )
n
n
j =0
2 2 il
n 1
2
i =0
B 2 l
B n +1 ( a )+ B 2 l
n− 1 ( a )
n +1 ( a )
( 4 ) =Tr ne
e
B 2 l +1
( a )
n
B 2 l
n− 1 ( a )(Tr ne
( B n +1 ( a )) + B n +1 ( a ))
B 2 l +1
=Tr ne
e
e
( a )
n
B 2 l
n−
B 2 l
n−
1 ( a )
B 2 l +1
1 ( a ) B n +1 ( a )
B 2 l +1
=Tr ne
e
( B n +1 ( a ))Tr ne
+Tr ne
e
=0 ,
e
( a )
( a )
n
n
where the latest identity follows by Corollary 2 (note that Tr ne
e
( v )=Tr nl
l
( v )if
v
GF(2 ne )).
B
Remaining Proof of Corollary 3
We can compute
ac 2 v 2 l +1
µ
Tr k
2 l +1 + ac 1 μ
2 l B n ( a )+ ac 1 μ
B 2 l
n ( a )+ ac 2 μ 2 B 2 l +1
=Tr k
a
V
V
V
( a )
n
( 11 =Tr k
2 l +1 + c 1 μV
2 l
B 2 l
n ( a )+ ac 2 μ 2 B 2 l +1
aV
( a )
n
2
v 0
v 0 + v 1
2 l +1 + c 1 μ
B n ( a )+ c 2 μ 2 N ne
Tr ne
e
( v 0 ) 2 v 2
=Tr k
a
V
V
e
1
v 0
v 0 + v 1
2 l +1
c 1 μ N ne
e
1+Tr ne
e
( v 0 )Tr ne
( v 0 )
=Tr k
a
V
+Tr e
e
v 0
v 0 + v 1
+ c 1 μ N ne
e
Tr ne
e
Tr ne
e
( v 0 ) v 1
1
v 0
v 0 + v 1
2 l +1
c 1 μ N ne
e
=Tr k
a
V
+Tr e
.
Thus,
ac 2 v 2 l + μ + v μ
1) Tr k
(
µ∈ GF(2 e )
2 l +1
1) Tr k
aV
c 1 µ N ne
e
v 0
v 0 + v 1
1) Tr e
=(
(
=0 .
µ∈ GF(2 e )
 
Search WWH ::




Custom Search