Biomedical Engineering Reference
In-Depth Information
delivering encapsulated payloads, some peptide hydrogels can be injected as solids
without need of external stimuli or interactions to reform into a solid similar to the
preinjected material. It is clear that the future is bright for the discovery of new
peptide molecules to make new hydrogel materials with both designed properties
as well as unanticipated, excellent properties.
References
1. Bromley, E.H.C., Channon, K.J., King, P.J.S., et al.: Assembly pathway of a designed alpha-
helical protein fiber. Biophys. J. 98 , 1668-1676 (2010). doi: 10.1016/j.bpj.2009.12.4309
2. Ruoslahti, E.: RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev.
Biol. 12 , 697-715 (1996). doi: 10.1146/annurev.cellbio.12.1.697
3. Nilsson, B.L., Soellner, M.B., Raines, R.T.: Chemical synthesis of proteins. Annu. Rev.
Biophys. Biomol. Struct. 34 , 91 (2005)
4. Hersel, U., Dahmen, C., Kessler, H.: RGD modified polymers: biomaterials for stimulated
cell adhesion and beyond. Biomaterials 24 , 4385-4415 (2003)
5. Iha, R.K., Wooley, K.L., Nyström, A.M., et al.: Applications of orthogonal “click” chemis-
tries in the synthesis of functional soft materials. Chem. Rev. 109 , 5620-5686 (2009)
6. Collier, J.H., Segura, T.: Evolving the use of peptides as components of biomaterials.
Biomaterials 32 , 4198-4204 (2011). doi: 10.1016/j.biomaterials.2011.02.030
7. DeForest, C.A., Sims, E.A., Anseth, K.S.: Peptide-functionalized click hydrogels with inde-
pendently tunable mechanics and chemical functionality for 3D cell culture. Chem. Mater.
22 , 4783-4790 (2010). doi: 10.1021/cm101391y
8. Ruoslahti, E.: Integrins. J. Clin. Invest. 87 , 1-5 (1991). doi: 10.1172/JCI114957
9. DeForest, C.A., Polizzotti, B.D., Anseth, K.S.: Sequential click reactions for synthesizing
and patterning three-dimensional cell microenvironments. Nat. Mater. 8 , 659-664 (2009).
doi: 10.1038/nmat2473
10. Ulijn, R.V., Smith, A.M.: Designing peptide based nanomaterials. Chem. Soc. Rev. 37 , 664-675
(2008)
11. Kyle, S., Aggeli, A., Ingham, E., McPherson, M.J.: Production of self-assembling biomaterials
for tissue engineering. Trends Biotechnol. 27 , 423-433 (2009). doi: 10.1016/j.tibtech.2009.04.002
12. Woolfson, D.N., Mahmoud, Z.N.: More than just bare scaffolds: towards multi-component
and decorated fibrous biomaterials. Chem. Soc. Rev. 39 , 3464-3479 (2010). doi: 10.1039/
c0cs00032a
13. Smith, A.M., Banwell, E.F., Edwards, W.R., et al.: Engineering increased stability into
self-assembled protein fibers. Adv. Funct. Mater. 16 , 1022-1030 (2006). doi: 10.1002/a
dfm.200500568
14. Schneider, J., Pochan, D., Ozbas, B., et al.: Responsive hydrogels from the intramolecu-
lar folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124 , 15030-15037
(2002). doi: 10.1021/ja027993g
15. Bowerman, C.J., Nilsson, B.L.: A reductive trigger for peptide self-assembly and hydrogela-
tion. J. Am. Chem. Soc. 132 , 9526-9527 (2010). doi : 10.1021/ja1025535
16. Kopecek, J., Yang, J.: Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem.
Int. Ed. 51 , 7396-7417 (2012). doi: 10.1002/anie.201201040
17. Ryan, D.M., Nilsson, B.L.: Self-assembled amino acids and dipeptides as noncovalent
hydrogels for tissue engineering. Polym. Chem. 3 , 18-33 (2011). doi : 10.1039/c1py00335f
18. Nicolai, T., Durand, D.: Controlled food protein aggregation for new functionality. Curr.
Opin. Colloid Interface Sci. 18 , 249-256 (2013). doi: 10.1016/j.cocis.2013.03.001
Search WWH ::




Custom Search