Biomedical Engineering Reference
In-Depth Information
2. Lehn, J.M.: Perspectives in supramolecular chemistry—from molecular recognition towards
molecular information-processing and self-organization. Angew. Chem. Int. Ed. Engl.
29 (11), 1304-1319 (1990). doi: 10.1002/anie.199013041
3.Folmer, B.J.B., Sijbesma, R.P., Versteegen, R.M., van der Rijt, J.A.J., Meijer,
E.W.: Supramolecular polymer materials: Chain extension of telechelic polymers
using a reactive hydrogen-bonding synthon. Adv. Mater. 12 (12), 874-878 (2000).
doi: 10.1002/1521-4095(200006)12:12<874:AID-ADMA874>3.0.CO;2-C
4. Lehn, J.M.: Supramolecular polymer chemistry—scope and perspectives. Polym. Int. 51 (10),
825-839 (2002). doi : 10.1002/pi.852
5. Appel, E.A., del Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels.
Chem. Soc. Rev. 41 (18), 6195-6214 (2012). doi: 10.1039/c2cs35264h
6. Loh, X.J., Vu, P.N.N., Kuo, N.Y., Li, J.: Encapsulation of basic fibroblast growth factor in
thermogelling copolymers preserves its bioactivity. J. Mater. Chem. 21 (7), 2246-2254
(2011). doi : 10.1039/c0jm03051a
7. Nguyen, V.P.N., Kuo, N.Y., Loh, X.J.: New biocompatible thermogelling copolymers con-
taining ethylene-butylene segments exhibiting very low gelation concentrations. Soft Matter
7 (5), 2150-2159 (2011). doi: 10.1039/c0sm00764a
8. Loh, X.J.: Supramolecular host-guest polymeric materials for biomedical applications.
Mater. Horiz. 2014 (1), 185-195 (2013). doi: 10.1039/C3MH00057E
9. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvi-
ronments for morphogenesis in tissue engineering. Nat. Biotechnol. 23 (1), 47-55 (2005).
doi: 10.1038/nbt1055
10. Zhang, S.G.: Fabrication of novel biomaterials through molecular self-assembly. Nat.
Biotechnol. 21 (10), 1171-1178 (2003). doi: 10.1038/nbt874
11. Morris, K.L., Chen, L., Raeburn, J., Sellick, O.R., Cotanda, P., Paul, A., Griffiths, P.C., King,
S.M., O'Reilly, R.K., Serpell, L.C.: Chemically programmed self-sorting of gelator net-
works. Nature Commun. 4 , 1480 (2013)
12. Bardelang, D., Zaman, M., Moudrakovski, I.L., Pawsey, S., Margeson, J.C., Wang, D., Wu,
X., Ripmeester, J.A., Ratcliffe, C.I., Yu, K.: Interfacing supramolecular gels and quantum
dots with ultrasound: smart photoluminescent dipeptide gels. Adv. Mater. 20 (23), 4517-4520
(2008)
13. Cao, L., Wang, X., Meziani, M.J., Lu, F.S., Wang, H.F., Luo, P.J.G., Lin, Y., Harruff, B.A.,
Veca, L.M., Murray, D., Xie, S.Y., Sun, Y.P.: Carbon dots for multiphoton bioimaging. J. Am.
Chem. Soc. 129 (37), 11318 (2007). doi: 10.1021/ja073527l
14. Kim, J., Piao, Y., Hyeon, T.: Multifunctional nanostructured materials for multimodal
imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38 (2), 372-390 (2009).
doi: 10.1039/b709883a
15. Ye, E., Loh, X.J.: Polymeric hydrogels and nanoparticles: a merging and emerging field.
Aust. J. Chem. 66 (9):997-1007 (2013). http://dx.doi.org/10.1071/CH13168
16. Yang, Z., Liang, G., Wang, L., Xu, B.: Using a kinase/phosphatase switch to regulate a supra-
molecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc.
128 (9), 3038-3043 (2006)
17. Cigognini, D., Silva, D., Paloppi, S., Gelain, F.: Evaluation of mechanical properties and
therapeutic effect of injectable self-assembling hydrogels for spinal cord injury. J. Biomed.
Nanotechnol. 10 (2), 309-323 (2014). doi: 10.1166/jbn.2014.1759
18. Koutsopoulos, S., Zhang, S.: Long-term three-dimensional neural tissue cultures in func-
tionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater. 9 (2),
5162-5169 (2013). doi: 10.1016/j.actbio.2012.09.010
19. Peng, K., Tomatsu, I., van den Broek, B., Cui, C., Korobko, A.V., van Noort, J., Meijer, A.H.,
Spaink, H.P., Kros, A.: Dextran based photodegradable hydrogels formed via a Michael addi-
tion. Soft Matter. 7 (10), 4881-4887 (2011)
20. Chen, W., Yang, Y., Rinadi, C., Zhou, D., Shen, A.Q.: Formation of supramolecular hydrogel
microspheres via microfluidics. Lab Chip 9 (20), 2947-2951 (2009)
Search WWH ::




Custom Search