Chemistry Reference
In-Depth Information
sieves prepared with liquid crystal templates, J. Am. Chem. Soc . 114 , 10834 (1992);
(c) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G.
D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to
300 Angstrom Pores, Science 279 , 548 (1998); (d) P. Yang, D. Zhao, D. I. Maroglese,
B. F. Chmelka and G. D. Stucky, Generalized syntheses of large-pore mesoporous
metal oxides with semicrystalline frameworks, Nature 396 , 152 (1998); (e) A. Corma,
From microporous to mesoporous molecular sieve materials and their use in catalysis,
Chem. Rev . 97 , 2373 (1997).
[17] S. U. Son, S.-I. Lee and Y. K. Chung, Cobalt on charcoal: A convenient and inexpensive
heterogeneous Pauson-Khand catalyst, Angew. Chem., Int. Ed. 39 , 4158 (2000).
[18] B. Cornils, W. A. Herrmann, R. Schl ogl and C.-H. Wong (Eds). Catalysis from A to
Z , Wiley-VCH, Weinheim, 2000, p 531.
[19] 21. For example, Raney R 2700 cobalt has a BET Surface area of 12 m 2 /g and a particle
size range of 20-50 nm. References: B. H. Gross, R. C. Mebane, D. L. Armstrong,
Appl. Catal. A: Gen. 219 , 281-289 (2001); Raney R Technical Manual, 4 th Edition, W.
R. Grace Company, Chattanoogo, Davison, TN 1996, p 21 and 23.
[20] L. F. Giraldo, B. L. Lopez, L. Perez, S. Urrego, L. Sierra and M. Mesa, Mesoporous
silica applications, Macromol. Symp. 258 , 129 (2007).
[21] F. Goettmann, P. Le Floch and C. Sanchez, Highly regioselective terminal hydroformy-
lation and Pauson-Khand reaction catalysed by mesoporous organized zirconium oxide
based powders, Chem. Commun. 180 (2006).
[22] F. Goettmann, A. Thomas and M. Antonietti, Metal-free activation of CO 2 by meso-
porous graphitic carbon nitride, Angew. Chem., Int. Ed. 46 , 2717 (2007).
[23] A. Z. Moshfegh, Nanoparticle catalysts, J. Phys. D: Appl. Phys. 42 , 233001 (30 pp)
(2009).
[24] (a) J. Huang, T. Jiang, B. X. Han, W. Z. Wu, Z. M. Liu, Z. L. Xie and J. L. Zhang, A
novel method to immobilize Ru nanoparticles on SBA-15 firmly by ionic liquid and
hydrogenation of arene, Catal. Lett. 103 , 59 (2005); (b) J. Huang, T. Jiang, H. Gao, B.
Han, Z. Liu, W. Wu, Y. Chang and G. Zhao, Pd nanoparticles immobilized on molec-
ular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation,
Angew. Chem., Int. Ed. 43 , 1397 (2004); (c) G. Vijayaraghvan and K. J. Stevenson,
Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped
carbon nanotube electrodes for oxygen reduction, Langmuir 23 , 5279 (2007); (d)
M. A. Gelesky, C. W. Scheeren, L. Foppa, F. A. Pavan, S. L. P. Dias and J. Dupont,
Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials
for hydrogenation reactions, Biomacromolecules 10 , 1888 (2009).
[25] K. H. Park, S. U. Son and Y. K. Chung, Immobilized heterobimetallic Ru/Co
nanoparticle-catalyzed Pauson-Khand-type reactions in the presence of pyridylmethyl
formate, Chem. Commun. 1898 (2003).
[26] J. H. Park and Y. K. Chung, Cobalt-rhodium heterobimetallic nanoparticle-catalyzed
reactions, Dalton Trans. 2369 (2008).
[27] K. H. Park, S. U. Son and Y. K. Chung, Sequential actions of palladium and cobalt
nanoparticles immobilized on silica: one-pot synthesis of bicyclic enones by catalytic
allylic alkylation and Pauson-Khand reaction, Org. Lett. 4 , 4361 (2002).
[28] D. M. de la Torre and M. M. Guijarro, Covalent bonds on activated carbon, Eur. J.
Org. Chem. 27 , 5147 (2010).
Search WWH ::




Custom Search