Biomedical Engineering Reference
In-Depth Information
32. Marthiens, V., Kazanis, I., Moss, L., Long, K., Ffrench-Constant, C.: Adhesion molecules in
the stem cell niche-more than just staying in shape? J. Cell Sci. 123, 1613-1622 (2010)
33. McBeath,
R.,
Pirone,
D.M.,
Nelson,
C.M.,
Bhadriraju,
K.,
Chen,
C.S.:
Cell
shape,
cytoskeletal tension,
and RhoA regulate
stem
cell lineage commitment.
Dev. Cell
6,
483-495 (2004)
34. Meyer, E.G., Buckley, C.T., Thorpe, S.D., Kelly, D.J.: Low oxygen tension is a more potent
promoter
of
chondrogenic
differentiation
than
dynamic
compression.
J.
Biomech.
43,
2516-2523 (2010)
35. Park, S.H., Sim, W.Y., Min, B.H., Yang, S.S., Khademhosseini, A., Kaplan, D.L.: Chip-based
comparison of the osteogenesis of human bone marrow- and adipose tissue-derived
mesenchymal stem cells under mechanical stimulation. PLoS ONE 7, e46689 (2012)
36. Poudel, I., Menter, D.E., Lim, J.Y.: Directing cell function and fate via micropatterning: role
of cell patterning size, shape, and interconnectivity. Biomed. Eng. Lett. 2, 38-45 (2012)
37. Riehl, B.D., Lim, J.Y.: Macro and microfluidic flows for skeletal regenerative medicine. Cells
1, 1225-1245 (2012)
38. Riehl, B.D., Park, J.H., Kwon, I.K., Lim, J.Y.: Mechanical stretching for tissue engineering:
two-dimensional and three-dimensional constructs. Tissue Eng. Part B Rev. 18, 288-300
(2012)
39. Salvi, J.D., Lim, J.Y., Donahue, H.J.: Finite element analyses of fluid flow conditions in cell
culture. Tissue Eng. Part C Methods 16, 661-670 (2010)
40. Salvi, J.D., Lim, J.Y., Donahue, H.J.: Increased mechanosensitivity of cells cultured on
nanotopographies. J. Biomech. 43, 3058-3062 (2010)
41. Schätti, O., Grad, S., Goldhahn, J., Salzmann, G., Li, Z., Alini, M., Stoddart, M.J.: A
combination of shear and dynamic compression leads to mechanically induced
chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22, 214-225 (2011)
42. Sen, B., Xie, Z., Case, N., Thompson, W.R., Uzer, G., Styner, M., Rubin, J.: mTORC2
regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow
derived mesenchymal stem cells. J. Bone Miner. Res. 29, 78-89 (2014)
43. Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits
adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal.
Endocrinology 149, 6065-6075 (2008)
44. Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates
NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem.
11(284), 34607-34617 (2009)
45. Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on
mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the
loading regimen. J. Biomech. 44, 593-599 (2011)
46. Sharma, R.I., Snedeker, J.G.: Paracrine interactions between mesenchymal stem cells affect
substrate driven differentiation toward tendon and bone phenotypes. PLoS ONE 7, e31504
(2012)
47. Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 45, 1-8 (2012)
48. Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static
mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the
MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302, C429-C441 (2012)
49. Song, W., Lu, H., Kawazoe, N., Chen, G.: Adipogenic differentiation of individual
mesenchymal stem cell on different geometric micropatterns. Langmuir 27, 6155-6162
(2011)
50. Takada, I., Kouzmenko, A.P., Kato, S.: Wnt and PPARc signaling in osteoblastogenesis and
adipogenesis. Nat. Rev. Rheumatol. 5, 442-447 (2009)
51. Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte
differentiation by mechanical stretching through ERK-mediated downregulation of PPARc2.
J. Cell Sci. 117, 3605-3614 (2004)
52. Wang, X., Yan, C., Ye, K., He, Y., Li, Z., Ding, J.: Effect of RGD nanospacing on
differentiation of stem cells. Biomaterials 34, 2865-2874 (2013)
Search WWH ::




Custom Search