Biomedical Engineering Reference
In-Depth Information
111. Wagner, W., Wein, F., et al.: Comparative characteristics of mesenchymal stem cells from
human
bone
marrow,
adipose
tissue,
and
umbilical
cord
blood.
Exp.
Hematol.
33,
1402-1416 (2005)
112. Bochet, L., Lehuede, C., et al.: Adipocyte-derived fibroblasts promote tumor progression
and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657-5668
(2013)
113. Iyengar, P., Espina, V., et al.: Adipocyte-derived collagen VI affects early mammary tumor
progression
in
vivo,
demonstrating
a
critical
interaction
in
the
tumor/stroma
microenvironment. J. Clin. Invest. 115, 1163-1176 (2005)
114. Khan, T., Muise, E.S., et al.: Metabolic dysregulation and adipose tissue fibrosis: role of
collagen VI. Mol. Cell. Biol. 29, 1575-1591 (2009)
115. Bouloumie, A., Sengenes, C., et al.: Adipocyte produces matrix metalloproteinases 2 and 9:
involvement in adipose differentiation. Diabetes 50, 2080-2086 (2001)
116. Andarawewa, K.L., Motrescu, E.R., et al.: Stromelysin-3 is a potent negative regulator of
adipogenesis
participating
to
cancer
cell-adipocyte
interaction/crosstalk
at
the
tumor
invasive front. Cancer Res. 65, 10862-10871 (2005)
117. Price, R.S., Cavazos, D.A., et al.: Obesity-related systemic factors promote an invasive
phenotype in prostate cancer cells. Prostate Cancer Prostatic Dis. 15, 135-143 (2012)
118. Park, Y.M., Yoo, S.H., et al.: Adipose-derived Stem Cells Induced EMT-like Changes in
H358 Lung Cancer Cells. Anticancer Res. 33, 4421-4430 (2013)
119. Hu, J., Liu, Z., et al.: Does TP53 mutation promote ovarian cancer metastasis to omentum
by regulating lipid metabolism? Med. Hypotheses 81, 515-520 (2013)
120. Allott, E.H., Morine, M.J., et al.: Elevated tumor expression of PAI-1 and SNAI2 in obese
esophageal adenocarcinoma patients and impact on prognosis. Clin. Transl. Gastroenterol 3,
e12 (2012)
121. Vander
Heiden,
M.G.,
Cantley,
L.C.,
et
al.:
Understanding
the
Warburg
effect:
the
metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009)
122. Levine, A.J., Puzio-Kuter, A.M.: The control of the metabolic switch in cancers by
oncogenes and tumor suppressor genes. Science 330, 1340-1344 (2010)
123. Wu, W., Zhao, S.: Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim.
Biophys. Sin. (Shanghai) 45, 18-26 (2013)
124. Pavlides, S., Whitaker-Menezes, D., et al.: The reverse Warburg effect: aerobic glycolysis in
cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984-4001 (2009)
125. Young, C.D., Anderson, S.M.: Sugar and fat—that's where it's at: metabolic changes in
tumors. Breast Cancer Res. 10, 202 (2008)
126. Yang, Y.A., Han, W.F., et al.: Activation of fatty acid synthesis during neoplastic
transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase.
Exp. Cell Res. 279, 80-90 (2002)
127. Arner, P.: Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract.
Res. Clin. Endocrinol. Metab. 19, 471-482 (2005)
128. Kuemmerle, N.B., Rysman, E., et al.: Lipoprotein lipase links dietary fat to solid tumor cell
proliferation. Mol. Cancer Ther. 10, 427-436 (2011)
129. Klein, S., Wolfe, R.R.: Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic
patients with esophageal cancer. J. Clin. Invest. 86, 1403-1408 (1990)
130. Ookhtens, M., Kannan, R., et al.: Liver and adipose tissue contributions to newly formed
fatty acids in an ascites tumor. Am. J. Physiol. 247, R146-R153 (1984)
131. Bonuccelli, G., Tsirigos, A., et al.: Ketones and lactate ''fuel'' tumor growth and metastasis:
evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9,
3506-3514 (2010)
132. Attar-Bashi, N.M., Orzeszko, K., et al.: Lipids and FA analysis of canine prostate tissue.
Lipids 38, 665-668 (2003)
133. Zyromski, N.J., Mathur, A., et al.: Obesity potentiates the growth and dissemination of
pancreatic cancer. Surgery 146, 258-263 (2009)
Search WWH ::




Custom Search