Biomedical Engineering Reference
In-Depth Information
115. Chen, K.D., Li, Y.S., Kim, M., Li, S., Yuan, S., Chien, S., Shyy, J.Y.: Mechanotransduction
in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol.
Chem. 274(26), 18393-18400 (1999)
116. Jin, Z.G., Ueba, H., Tanimoto, T., Lungu, A.O., Frame, M.D., Berk, B.C.: Ligand-
independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress
regulates activation of endothelial nitric oxide synthase. Circ. Res. 93(4), 354-363 (2003).
doi: 10.1161/01.RES.0000089257.94002.96
117. Lee, H.J., Koh, G.Y.: Shear stress activates Tie2 receptor tyrosine kinase in human
endothelial cells. Biochem. Biophys. Res. Commun. 304(2), 399-404 (2003)
118. Milkiewicz, M., Doyle, J.L., Fudalewski, T., Ispanovic, E., Aghasi, M., Haas, T.L.: HIF-
1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced
angiogenesis in rat skeletal muscle. J. Physiol. 583(Pt 2), 753-766 (2007). doi: 10.1113/
jphysiol.2007.136325
119. Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E., Resnick, N.:
VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular
endothelial cells. Proc. Nat. Acad. Sci. USA. 99(14), 9462-9467 (2002). doi: 10.1073/pnas.
142224299
120. Tarbell, J.M., Weinbaum, S., Kamm, R.D.: Cellular fluid mechanics and mechano-
transduction. Ann. Biomed. Eng. 33(12), 1719-1723 (2005). doi: 10.1007/s10439-005-
8775-z
121. Kamm, R.D., Kaazempur-Mofrad, M.R.: On the molecular basis for mechanotransduction.
Mech. Chem. Biosyst. MCB 1(3), 201-209 (2004)
122. Lee, S.E., Kamm, R.D., Mofrad, M.R.: Force-induced activation of talin and its possible
role in focal adhesion mechanotransduction. J. Biomech. 40(9), 2096-2106 (2007). doi: 10.
1016/j.jbiomech.2007.04.006
123. Chen, A.K., Latz, M.I., Sobolewski, P., Frangos, J.A.: Evidence for the role of G-proteins in
flow stimulation of dinoflagellate bioluminescence. Am. J. Physiol. Regul. Integr. Comp.
Physiol. 292(5), R2020-R2027 (2007). doi: 10.1152/ajpregu.00649.2006
124. Mitchell, M.J., King, M.R.: Shear-induced resistance to neutrophil activation via the formyl
peptide receptor. Biophys. J. 102(8), 1804-1814 (2012). doi: 10.1016/j.bpj.2012.03.053
125. Su, S.S., Schmid-Schonbein, G.W.: Internalization of formyl peptide receptor in leukocytes
subject to fluid stresses. Cell. Mol. Bioeng. 3(1), 20-29 (2010). doi: 10.1007/s12195-
010-0111-5
126. Chen, A.Y., DeLano, F.A., Valdez, S.R., Ha, J.N., Shin, H.Y., Schmid-Schonbein, G.W.:
Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously
hypertensive rat. Am. J. Physiol. Cell Physiol. 299(6), C1441-C1449 (2010). doi: 10.1152/
ajpcell.00157.2010
127. Marschel, P., Schmid-Schonbein, G.W.: Control of fluid shear response in circulating
leukocytes by integrins. Ann. Biomed. Eng. 30(3), 333-343 (2002)
128. Bodin, S., Welch, M.D.: Plasma membrane organization is essential for balancing
competing pseudopod- and uropod-promoting signals during neutrophil polarization and
migration. Mol. Biol. Cell 16(12), 5773-5783 (2005). doi: 10.1091/mbc.E05-04-0358
129. Lenaz, G.: Lipid fluidity and membrane protein dynamics. Biosci. Rep. 7(11), 823-837
(1987)
130. Ben-Bassat, H., Polliak, A., Rosenbaum, S.M., Naparstek, E., Shouval, D., Inbar, M.:
Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell
surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas
and leukemias. Cancer Res. 37(5), 1307-1312 (1977)
131. Tomonaga, A., Hirota, M., Snyderman, R.: Effect of membrane fluidizers on the number and
affinity
of
chemotactic
factor
receptors
on
human
polymorphonuclear
leukocytes.
Microbiol. Immunol. 27(11), 961-972 (1983)
132. Yuli, I., Tomonaga, A., Synderman, R.: Chemoattractant receptor functions in human
polymorphonuclear leukocytes are divergently altered by membrane fluidizers. Proc. Nat.
Acad. Sci. USA. 79(19), 5906-5910 (1982)
Search WWH ::




Custom Search