Biomedical Engineering Reference
In-Depth Information
77. Lum, A.F., Green, C.E., Lee, G.R., Staunton, D.E., Simon, S.I.: Dynamic regulation of
LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in
shear flow. J. Biol. Chem. 277(23), 20660-20670 (2002). doi: 10.1074/jbc.M202223200
78. Neelamegham, S., Taylor, A.D., Burns, A.R., Smith, C.W., Simon, S.I.: Hydrodynamic
shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular
adhesion molecule-1. Blood 92(5), 1626-1638 (1998)
79. Ding, Z.M., Babensee, J.E., Simon, S.I., Lu, H., Perrard, J.L., Bullard, D.C., Dai, X.Y.,
Bromley, S.K., Dustin, M.L., Entman, M.L., Smith, C.W., Ballantyne, C.M.: Relative
contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 163(9),
5029-5038 (1999)
80. Ehlers, M.R.: CR3: a general purpose adhesion-recognition receptor essential for innate
immunity. Microbes. Infect. Inst. Pasteur 2(3), 289-294 (2000)
81. Larson, R.S., Springer, T.A.: Structure and function of leukocyte integrins. Immunol. Rev.
114, 181-217 (1990)
82. Lu, H., Smith, C.W., Perrard, J., Bullard, D., Tang, L., Shappell, S.B., Entman, M.L.,
Beaudet, A.L., Ballantyne, C.M.: LFA-1 is sufficient in mediating neutrophil emigration in
Mac-1-deficient mice. J. Clin. Investig. 99(6), 1340-1350 (1997). doi: 10.1172/JCI119293
83. Sutton, D.W., Schmid-Schonbein, G.W.: Elevation of organ resistance due to leukocyte
perfusion. Am. J. Physiol. 262(6 Pt 2), H1646-H1650 (1992)
84. Warnke, K.C., Skalak, T.C.: The effects of leukocytes on blood flow in a model skeletal
muscle capillary network. Microvasc. Res. 40(1), 118-136 (1990)
85. Helmke, B.P., Bremner, S.N., Zweifach, B.W., Skalak, R., Schmid-Schonbein, G.W.:
Mechanisms for increased blood flow resistance due to leukocytes. Am. J. Physiol. 273(6 Pt
2), H2884-H2890 (1997)
86. Helmke, B.P., Sugihara-Seki, M., Skalak, R., Schmid-Schonbein, G.W.: A mechanism for
erythrocyte-mediated elevation of apparent viscosity by leukocytes in vivo without adhesion
to the endothelium. Biorheology 35(6), 437-448 (1998)
87. Konstantopoulos, K., Neelamegham, S., Burns, A.R., Hentzen, E., Kansas, G.S., Snapp,
K.R., Berg, E.L., Hellums, J.D., Smith, C.W., McIntire, L.V., Simon, S.I.: Venous levels of
shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-
selectin and beta2-integrin. Circulation 98(9), 873-882 (1998)
88. Diacovo, T.G., Roth, S.J., Buccola, J.M., Bainton, D.F., Springer, T.A.: Neutrophil rolling,
arrest, and transmigration across activated, surface-adherent platelets via sequential action
of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1), 146-157 (1996)
89. Wagner,
D.D.,
Frenette,
P.S.:
The
vessel
wall
and
its
interactions.
Blood
111(11),
5271-5281 (2008). doi: 10.1182/blood-2008-01-078204
90. Eppihimer, M.J., Lipowsky, H.H.: Effects of leukocyte-capillary plugging on the resistance
to flow in the microvasculature of cremaster muscle for normal and activated leukocytes.
Microvasc. Res. 51(2), 187-201 (1996). doi: 10.1006/mvre.1996.0020
91. Lipowsky, H.H.: Microvascular rheology and hemodynamics. Microcirculation 12(1), 5-15
(2005). doi: 10.1080/10739680590894966
92. Makino, A., Glogauer, M., Bokoch, G.M., Chien, S., Schmid-Schonbein, G.W.: Control of
neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am. J. Physiol. Cell
Physiol. 288(4), C863-C871 (2005). doi: 10.1152/ajpcell.00358.2004
93. Shin, H.Y., Zhang, X., Makino, A., Schmid-Schonbein, G.W.: Mechanobiological Evidence
for the Control of Neutrophil Activity by Fluid Shear Stress. In: Mechanobiology
Handbook, pp. 139-175. CRC Press, Boca Raton (2011). doi: 10.1201/b10780-11
94. Pohlman, T.H., Harlan, J.M.: Adaptive responses of the endothelium to stress. J. Surg. Res.
89(1), 85-119 (2000). doi: 10.1006/jsre.1999.5801
95. Samet, M.M., Lelkes, P.L.: The hemodynamic environment of endothelium in vivo and its
simulation in vitro. Mechanical Forces and the Endothelium, pp. 1-32. Harwood Academic
Publishers, Amsterdam (1999)
Search WWH ::




Custom Search