Biomedical Engineering Reference
In-Depth Information
116. Del Carlo, M., Loeser, R.F.: Nitric oxide-mediated chondrocyte cell death requires the
generation of additional reactive oxygen species. Arthritis Rheum. 46, 394-403 (2002)
117. Anderson, D.D., Chubinskaya, S., Guilak, F., et al.: Post-traumatic osteoarthritis: improved
understanding and opportunities for early intervention. J. Orthop. Res. 29, 802-809 (2011)
118. Buckwalter, J.A., Anderson, D.D., Brown, T.D., et al.: The roles of mechanical stresses in
the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage.
(2013). doi: 10.1177/1947603513495889
119. Gavriilidis, C., Miwa, S., von Zglinicki, T., et al.: Mitochondrial dysfunction in
osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis
Rheum. 65, 378-387 (2013)
120. López-Armada, M., Carames, B., Martin, M., et al.: Mitochondrial activity is modulated by
TNFa and IL-1b in normal human chondrocyte cells. Osteoarthritis Cartilage 14, 1011-1022
(2006)
121. Shikhman, A.R., Brinson, D.C., Valbracht, J., Lotz, M.K.: Cytokine regulation of facilitated
glucose transport in human articular chondrocytes. J. Immunol. 167, 7001-7008 (2001)
122. Jones, D.P.: Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865-1879 (2006)
123. Del Carlo, M., Loeser, R.F.: Increased oxidative stress with aging reduces chondrocyte survival:
Correlation with intracellular glutathione levels. Arthritis Rheum. 48, 3419-3430 (2003)
124. Aigner, T., Fundel, K., Saas, J., et al.: Large-scale gene expression profiling reveals major
pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum. 54,
3533-3544 (2006)
125. Regan, E., Flannelly, J., Bowler, R., et al.: Extracellular superoxide dismutase and oxidant
damage in osteoarthritis. Arthritis Rheum. 52, 3479-3491 (2005)
126. Ruiz-Romero,
C.,
López-Armada,
M.J.,
Blanco,
F.J.:
Mitochondrial
proteomic
characterization
of human
normal articular
chondrocytes.
Osteoarthritis
Cartilage
14,
507-518 (2006). doi: 10.1016/j.joca.2005.12.004
127. Ruiz-Romero, C., Calamia, V., Mateos, J., et al.: Mitochondrial dysregulation of
osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in
mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteomics
8, 172-189 (2009)
128. Scott, J.L., Gabrielides, C., Davidson, R.K., et al.: Superoxide dismutase downregulation in
osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69, 1502-1510 (2010)
129. Baur, A., Henkel, J., Bloch, W., et al.: Effect of exercise on bone and articular cartilage in
heterozygous manganese superoxide dismutase (SOD2) deficient mice. Free Rad Res. 45,
550-558 (2011)
130. Kurz, B., Lemke, A.K., Fay, J., et al.: Pathomechanisms of cartilage destruction by
mechanical injury. Ann Anat. 187, 473-485 (2005)
131. Yamazaki, K., Fukuda, K., Matsukawa, M., et al.: Cyclic tensile stretch loaded on bovine
chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen
species. Arthritis Rheum. 48, 3151-3158 (2003)
132. Sachdev, S., Davies, K.J.: Production, detection, and adaptive responses to free radicals in
exercise. Free Radic. Biol. Med. 44, 215-223 (2008)
133. Matsuzaki, S., Szweda, P.A., Szweda, L.I., Humphries, K.M.: Regulated production of free
radicals by the mitochondrial electron transport chain: cardiac ischemic preconditioning.
Adv. Drug Deliv. Rev. 61, 1324-1331 (2009)
134. Kamata, H., Hirata, H.: Redox regulation of cellular signalling. Cell. Signal. 11, 1-14 (1999)
135. Ray, P.D., Huang, B.-W., Tsuji, Y.: Reactive oxygen species (ROS) homeostasis and redox
regulation in cellular signaling. Cell. Signal. 24, 981-990 (2012)
136. Mathy-Hartert, M., Hogge, L., Sanchez, C., et al.: Interleukin-1b and interleukin-6 disturb
the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative
stress generation. Osteoarthritis Cartilage 16, 756-763 (2008)
Search WWH ::




Custom Search