Civil Engineering Reference
In-Depth Information
53. Dorofeev SB et al (1999) Effect of scale and mixture properties on behavior of turbulent
flames in obstructed areas, FZKA 6268, Forschungszentrum Karlsruhe
54. Kuznetsov M et al (1999) Effect of obstacle geometry on behaviour of turbulent flames,
FZKA 6328, Forschungszentrum Karlsruhe
55. Breitung W et al (2005) Innovative Methoden zur Analyse und Kontrolle des Wasserstoff-
verhaltens bei Kernschmelzunf¨llen, FZKA 7085, Forschungszentrum Karlsruhe
56. Krieg R et al (2003) Assessment of the load-carrying capacities of a spherical pressurized
water reactor steel containment under a postulated hydrogen detonation. Nucl Technol 141
(2):109-121
57. Rohde J et al (1997) Selection of representative accidents and evaluation of H2-control
measures in PWR containments. In: 14th Session of RSK light water reactor safety commit-
tee, January 1997
58. ABAQUS (1989) A general purpose linear and nonlinear finite element code, user manual
standard 5.8. Hibbit, Karlson & Sorenson Inc., Providence, RI
59. Bung H et al (1993) A new method for the treatment of impact and mechanics in reactor
technology (SMIRT12), Stuttgart, Germany
60. Krieg R (2005) Failure strains and proposed limit strains for a reactor pressure vessel under
severe accident conditions. Nucl Eng Des 235:199-212
61. Jeschke J et al (2011) Critical strains and melting phenomena for different steel sheet
specimens under uniaxial loading. Nucl Eng Des 241:2045-2052
62. Ostermann D et al (2011) Critical strains and necking phenomena for different steel speci-
mens under biaxial loading. Nucl Eng Des 241:2045-2052
63. Breitung W et al (2005) Innovative Methoden zur Analyse und Kontrolle des Wasserstoff-
verhaltens
bei Kernschmelzunf¨llen, Abschlußbericht
zu
Teilprojekt
1
des
HGF-Strategiefondsprojekts 98/07
64. Deutsche Risikostudie Kernkraftwerke Phase B (1990) Verlag T ¨ V Rheinland, K¨ ln
65. Smidt D (1979) Reaktorsicherheitstechnik, Sicherheitssysteme und St¨r-fallanalyse f¨r
Leichtwasserreaktoren und Schnelle Br¨ ter. Springer, Berlin
66. Jacobs G (1995) Dynamic loads from reactor pressure vessel core melt through under high
primary pressure. Nucl Technol 111:351-356
67. Plank H et al (2009) Severe accident management measures for future NPPs. http://sacre.web.
psi.ch/ISAMM2009/oecd-sami2001/Papers/p20-Plank/SAM-Paper-b.pdf
68. Czech J et al (1999) European pressurized water reactor: safety objectives and principles.
Nucl Eng Des 187:25-32
69. Tong LS (1968) Core cooling in a hypothetical loss of cooling accident. Estimate of heat
transfer in core meltdown. Nucl Eng Des 8:309-312
70. Henry RE et al (1993) External cooling of a reactor vessel under severe accident conditions.
Nucl Eng Des 139:31-43
71. Rempe JL et al (1993) Light water reactor lower head failure. Idaho National Engineering
Laboratory, NUREG/CR-5642, EGG-2618
72. Thinnes GL et al (1989) Comparison of thermal and mechanical responses of the Three Mile
Island Unit 2 vessel. Nucl Technol 87:1036-1049
73. Cummings WE et al (2013) Westinghouse AP1000 advanced passive plant. In: Proceedings
of ICAPP 2003, Paper 3235, Cordoba, Spain
74. Park JW (2012) Investigation of core melt coolability inside the large evolutionary advanced
power reactor APR1400, atw 57, Heft 1
75. Stosic ZV et al (2008) Boiling water reactor with innovative safety concept: the generation III
+ SWR-1000. Nucl Eng Des 238:1863-1901
76. Ma W et al (2009) On the effectiveness of CRGT cooling as a severe accident management
measure for BWRs. In: OECD workshop on the implementation of severe accident manage-
ment measures (SAMI-2009), Schloß B¨ ttstein, Switzerland
Search WWH ::




Custom Search