Digital Signal Processing Reference
In-Depth Information
Solution Parameters of the equations result from the sampling frequency and are
equal:
N 1 ¼ f S = f 1 ¼ 1000 = 50 ¼ 20 ;
X 1 ¼ 2p = N 1 ¼ 2p = 20 ¼ p = 10 ;
cos ð X 1 Þ¼ cos ð p = 10 Þ¼ 0 : 951 ;
sin ð X 1 Þ¼ sin ð p = 10 Þ¼ 0 : 309 :
Substituting the values to the general equations one obtains specific algorithms
for magnitude measurement, and for:
• orthogonalization by single delay, k ¼ 1( 8.73 )
x 1 ð n Þþ x 1 ð n k Þ cos ð kX 1 Þ x 1 ð n Þ
s
2
X 1m ¼
sin ð kX 1 Þ
s
x 1 ð n Þþ x 1 ð n 1 Þ 0 : 951x 1 ð n Þ
2
¼
;
0 : 309
• orthogonalization by double delay, k = 1( 6.41 )
s
x 1 ð n k Þþ x 1 ð n 2k Þ x 1 ð n Þ
2
X 1m ¼
2 sin ð kX 1 Þ
s
x 1 ð n 1 Þþ x 1 ð n 2 Þ x 1 ð n Þ
0 : 618
2
¼
;
• orthogonalization by single delay, k ¼ N 1 = 4 ;
q
x 1 ð n Þþ x 1 ð n N 1 = 4 Þ
q
x 1 ð n Þþ x 1 ð n 5 Þ
X 1m ¼
¼
:
Example 8.7 Provide full-cycle magnitude measurement algorithms with appli-
cation of Walsh filters of I and II order. Assume sampling rate f S = 1000 Hz.
Solution For the sampling frequency f S = 1000 Hz the number of samples per
cycle is N 1 ¼ 20 : Thus the output signals y ð n Þ of respective Walsh filters are
produced according to the following equations processing input values x ð n Þ; ( 6.22 ),
( 6.25 ):
y 1C ð n Þ¼ X
x ð n k Þþ X
x ð n k Þ X
4
14
19
x ð n k Þ;
k ¼ 0
k ¼ 5
15
Search WWH ::




Custom Search