Information Technology Reference
In-Depth Information
The following propositions provide means for recursively deducing the bounds of variables:
Proposition A.1 (Deduction rules to determine the bounds for ∀ x . p )
1. ( p = ¬ q ) ∧ e = ↑ x (∃ x.q ) ⇒ e = ↑ x (∀ x.p )
2. ( p = ¬ q ) ∧ e = ↓ x (∃ x.q ) ⇒ e = ↓ x (∀ x.p )
3. ( p = q r ) ∧ e = ↑ x (∃ x.q ) ⇒ e = ↑ x (∀ x.p )
4. ( p = q r ) ∧ e = ↓ x (∃ x.q ) ⇒ e = ↓ x (∀ x.p )
5. ( p = q r ) ∧ e = ↑ x (∀ x.r ) ⇒ e = ↑ x (∀ x.p )
6. ( p = q r ) ∧ e = ↓ x (∀ x.r ) ⇒ e = ↓ x (∀ x.p )
7. ( p = q r ) ∧ e 1 = ↑ x (∀ x.q ) ∧ e 2 = ↑ x (∀ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∀ x.p )
8. ( p = q r ) ∧ e 1 = ↓ x (∀ x.q ) ∧ e 2 = ↓ x (∀ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∀ x.p )
9. ( p = q r ) ∧ e 1 = ↑ x (∀ x.q ) ∧ e 2 = ↑ x (∀ x.r ) ⇒ min ( e 1 , e 2 ) = ↑ x (∀ x.p )
10. ( p = q r ) ∧ e 1 = ↓ x (∀ x.q ) ∧ e 2 = ↓ x (∀ x.r ) ⇒ max ( e 1 , e 2 ) = ↓ x (∀ x.p )
11. ( p = q r ) ∧ e = ↑ x (∀ x.q ) ⇒ e = ↑ x (∀ x.p )
12. ( p = q r ) ∧ e = ↓ x (∀ x.q ) ⇒ e = ↓ x (∀ x.p )
13. ( p = q r ) ∧ e 1 = ↑ x (∀ x.q ) ∧ e 2 = ↑ x (∀ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∀ x.p )
14. ( p = q r ) ∧ e 1 = ↓ x (∀ x.q ) ∧ e 2 = ↓ x (∀ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∀ x.p )
15. ( p = q r ) ∧ e 1 = ↑ x (∃ x.q ) ∧ e 2 = ↑ x (∃ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∀ x.p )
16. ( p = q r ) ∧ e 1 = ↓ x (∃ x.q ) ∧ e 2 = ↓ x (∃ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∀ x.p )
Proposition A.2 (Deduction rules to determine the bounds for ∃ x . p )
17. ( p = ¬ q ) ∧ e = ↑ x (∀ x.q ) ⇒ e = ↑ x (∃ x.p )
18. ( p = ¬ q ) ∧ e = ↓ x (∀ x.q ) ⇒ e = ↓ x (∃ x.p )
19. ( p = q r ) ∧ e 1 = ↑ x (∀ x.q ) ∧ e 2 = ↑ x (∃ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∃ x.p )
20. ( p = q r ) ∧ e 1 = ↓ x (∀ x.q ) ∧ e 2 = ↓ x (∃ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∃ x.p )
21. ( p = q r ) ∧ e = ↑ x (∃ x.q ) ⇒ e = ↑ x (∃ x.p )
22. ( p = q r ) ∧ e = ↓ x (∃ x.q ) ⇒ e = ↓ x (∃ x.p )
23. ( p = q r ) ∧ e 1 = ↑ x (∃ x.q ) ∧ e 2 = ↑ x (∃ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∃ x.p )
24. ( p = q r ) ∧ e 1 = ↓ x (∃ x.q ) ∧ e 2 = ↓ x (∃ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∃ x.p )
25. ( p = q r ) ∧ e 1 = ↑ x (∀ x.q ) ∧ e 2 = ↑ x (∃ x.r ) ⇒ max ( e 1 , e 2 ) = ↑ x (∃ x.p )
26. ( p = q r ) ∧ e 1 = ↓ x (∀ x.q ) ∧ e 2 = ↓ x (∃ x.r ) ⇒ min ( e 1 , e 2 ) = ↓ x (∃ x.p )
Search WWH ::




Custom Search