Biology Reference
In-Depth Information
Skoudy, A., Mounier, J., Aruffo, A., et al., 2000. CD44 binds to the Shigella IpaB protein and par-
ticipates in bacterial invasion of epithelial cells. Cell Microbiol. 2, 19-33 .
Small, P.L., Falkow, S., 1988. Identiication of regions on a 230-kilobase plasmid from enteroinva-
sive Escherichia coli that are required for entry into HEp-2 cells. Infect. Immun. 56, 225-229 .
Sokurenko, E.V., Hasty, D.L., Dykhuizen, D.E., 1999. Pathoadaptive mutations: gene loss and vari-
ation in bacterial pathogens. Trends. Microbiol. 7, 191-195 .
Steele, D., Riddle, M., van de Verg, L., Bourgeois, L., 2012. Vaccines for enteric diseases: a meeting
summary. Expert Rev. Vaccines 11, 407-409 .
Strockbine, N.A., Maurelli, A.T., 2005. Shigella. In: Garrity, G.M. (Ed.), Bergey's Manual of Sys-
tematic Bacteriology, second ed. The Proteobacteria Part B: The Gammaproteobacteria, vol. 2.
Springer, New York, pp. 811-823 .
Suzuki, T., Mimuro, H., Suetsugu, S., Miki, H., Takenawa, T., Sasakawa, C., 2002. Neural Wiskott-
Aldrich syndrome protein (N-WASP) is the speciic ligand for Shigella VirG among the WASP
family and determines the host cell type allowing actin-based spreading. Cell Microbiol. 4,
223-233 .
Suzuki, T., Nakanishi, K., Tsutsui, H., et al., 2005. A novel caspase-1/toll-like receptor 4-inde-
pendent pathway of cell death induced by cytosolic Shigella in infected macrophages. J. Biol.
Chem. 280, 14042-14050 .
Tamano, K., Aizawa, S., Katayama, E., et al., 2000. Supramolecular structure of the Shigella type
III secretion machinery: the needle part is changeable in length and essential for delivery of
effectors. EMBO J. 19, 3876-3887 .
Tamano, K., Katayama, E., Toyotome, T., Sasakawa, C., 2002. Shigella Spa32 is an essential secre-
tory protein for functional type III secretion machinery and uniformity of its needle length.
J. Bacteriol. 184, 1244-1252 .
Tobe, T., Nagai, S., Okada, N., Adler, B., Yoshikawa, M., Sasakawa, C., 1991. Temperature-
regulated expression of invasion genes in Shigella lexneri is controlled through the transcrip-
tional activation of the virB gene on the large plasmid. Mol. Microbiol. 5, 887-893 .
Tobe, T., Yoshikawa, M., Mizuno, T., Sasakawa, C., 1993. Transcriptional control of the inva-
sion regulatory gene virB of Shigella lexneri : activation by virF and repression by H-NS.
J. Bacteriol. 175, 6142-6149 .
Touchon, M., Hoede, C., Tenaillon, O., et al., 2009. Organised genome dynamics in the Escherichia
coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 .
Townes, J.M., 2010. Reactive arthritis after enteric infections in the United States: the problem of
deinition. Clin. Infect. Dis. 50, 247-254 .
Tran, V.N., Ben Ze'ev, A., Sansonetti, P.J., 1997. Modulation of bacterial entry into epithelial cells
by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717-2729 .
Tran, V.N., Caron, E., Hall, A., Sansonetti, P.J., 1999. IpaC induces actin polymerization and ilopo-
dia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249-3262 .
Tulloch Jr., E.F., Ryan, K.J., Formal, S.B., Franklin, F.A., 1973. Invasive enteropathic Escherichia
coli dysentery. An outbreak in 28 adults. Ann. Intern. Med. 79, 13-17 .
Turner, E.C., Dorman, C.J., 2007. H-NS antagonism in Shigella lexneri by VirB, a virulence gene
transcription regulator that is closely related to plasmid partition factors. J. Bacteriol. 189,
3403-3413 .
Uchiya, K., Tobe, T., Komatsu, K., et al., 1995. Identiication of a novel virulence gene, virA , on
the large plasmid of Shigella , involved in invasion and intercellular spreading. Mol. Microbiol.
17, 241-250 .
van den Beld, M.J., Reubsaet, F.A., 2012. Differentiation between Shigella , enteroinvasive Escherichia
coli (EIEC) and noninvasive Escherichia coli . Eur. J. Clin. Microbiol. Infect. Dis. 31, 899-904 .
Search WWH ::




Custom Search