Civil Engineering Reference
In-Depth Information
M
L
2
P
L
EI
iy
iz
V
===− =−
q
q
0
q
+
iconj
ireal
ij
iy
EI
2
y
y
=−
M
L
+
P
L
EI
2
L
2
3
L
iy
M
=
=
0
iz
iconj
ireal
EI
22
y
y
Solving the second equation for P iz in terms of M iy and then substituting
into the first equation, the stiffness value can be found.
3
M
iy
P
=
iz
2
L
MMM
L
3
4
L
L
iy
iy
iy
−=−
q
+
=−
iy
EI
EI
4
EI
y
y
y
4
EI
L
y
M
=
q y
(4.15)
iy
i
= 6
EI
L
y
P
q
iz
iy
2
It should be noted that the force P iz was actually shown as negative in the
original free-body diagram so it does have a negative value for stiffness.
=− 6
EI
y
P
q
(4.16)
iz
iy
2
L
Example 4.16 iz stiffness
Derive the ∆ iz stiffness using the area moment method for a linear member.
A free-body diagram is shown in Figure 4.29 with an imposed deflec-
tion of 1 unit on the i i-end of the member. The moments are assumed in the
negative y direction using the right-hand rule and the Cartesian right-hand
coordinate system. The forces are shown consistent with the deformation.
The moment diagram divided by EI is shown for the reaction forces on the
i i-end of the member.
Since both ends of the beam are fixed for rotation, the change in rota-
tion from the i -end to the j i-end is zero. This is the area under the M / EI
diagram between those points.
M
L
P
L
EI
2
iy
q
==−=−
0
q
q
+
iz
ij
j
i
EI
2
y
y
2
M
iy
P
=
iz
L
 
Search WWH ::




Custom Search