Biomedical Engineering Reference
In-Depth Information
ʵ
11
ʵ
22
ʵ
33
˃
11 = C 11 C 12 C 13 C 14 C 15 C 16
n
ʵ
12
(13)
n
ʵ
13
n
ʵ
23
n
which can be transformed by vector algebra into
C 11
C 12
C 13
C 14
C 15
C 16
˃
11 = ʵ
11 ʵ
22 ʵ
33 ʵ
12 ʵ
13 ʵ
23
n
n
n
n
n
n
n
(14)
Expanding Eq. ( 14 ) to all load cases finally gives
1
1
1
1
1
1
1
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
C 11
C 12
C 13
C 14
C 15
C 16
2
2
2
2
2
2
2
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
3
3
3
3
3
3
3
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
=
(15)
4
4
4
4
4
4
4
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
5
5
5
5
5
5
5
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
6
6
6
6
6
6
6
11 >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
The first 6 coefficients C 11 - C 16 of the generalized stiffness tensor can now be cal-
culated by multiplying this equation with the inverse strain matrix
<
E
>
.This
enables a general notation to calculate all 36 stiffness components.
1
1
1
1
1
1
1
1
C i 1
C i 2
C i 3
C i 4
C i 5
C i 6
ij >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
2
2
2
2
2
2
2
ij >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
3
3
3
3
3
3
3
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
ij >
=
(16)
4
4
4
4
4
4
4
ij >
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
5
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
ij >
6
6
6
6
6
6
6
11 ><ʵ
22 ><ʵ
33 ><ʵ
12 ><ʵ
13 ><ʵ
23 >
ij >
However, the symmetries of the strain and stress tensors demand a symmetric stiffness
tensor with only 21 components remaining. The numerical procedure could cause
small deviations between the symmetric entries. Practically, they can be averaged.
Search WWH ::




Custom Search