Biomedical Engineering Reference
In-Depth Information
References
1. Berenstein, C.K., Mens, L.H., Mulder, J.J., Vanpoucke, F.J.: Current steering and current focus-
ing in cochlear implants: Comparison of monopolar, tripolar, and virtual channel electrode
configurations. Ear Hear. 29 , 250-260 (2008)
2. Berenstein, C.K., Vanpoucke, F.J., Mulder, J.J., Mens, L.H.: Electric field imaging as a means
to predict the loudness of monopolar and tripolar stimuli in cochlear implant recipients. Hear.
Res. 270 , 28-38 (2010)
3. Briaire, J.J.: Cochlear implants from model to patients, Thesis, ISBN 978-90-9023555-4,
Universiteit Leiden (2008)
4. Colletti, L., Mandal, M., Colletti, V.: Cochlear implants in children younger than 6 months.
Otolaryngol. HeadNeck Surg. Off J. Am. Acad. Otolaryngol. HeadNeck Surg. 147 (1), 139-146
(2012)
5. Escudé, B., James, C., Deguine, O., Cochard, N., Eter, E., Fraysse, B.: The size of the cochlea
and predictions of insertion depth angles for cochlear implant electrodes. Audiol. Neurotology
11 (suppl 1), 27-33 (2006)
6. Finley, C., Wilson, B., White, M.: Models of neural responsiveness to electrical stimulation.
In: Miller, J., Spelman, F. (eds.) Cochlear Implants, pp. 55-96. Springer New York (1990)
7. Frijns, J.H.M., de Snoo, S.L., ten Kate, J.H.: Spatial selectivity in a rotationally symmetric
model of the electrically stimulated cochlea. Hear. Res. 95 , 33-48 (1996)
8. Frijns, J.H.M., de Snoo, S.L., Schoonhoven, R.: Potential distributions and neural excitation
pattervs in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res.
87 , 170-186 (1995)
9. Greenwood, D.D.: A cochlear frequency-position function for several species- 29 years later.
J. Acoust. Soc. Am. 87 , 2592-2605 (1990)
10. Hanekom, T.: Thesis—cochlea modelling. In: Faculty of Engineering, built Environment and
Information Technology. University of Pretoria, Pretoria (2001)
11. Hughes, M.L., Vander Werff, K.R., Brown, C.J., Abbas, P.J., Kelsay, D.M., Teagle, H.F., Low-
der, M.W.: A longitudinal study of electrode impedance, the electrically evoked compound
action potential, and behavioral measures in nucleus 24 cochlear implant users. Ear Hear. 22 ,
471-486 (2001)
12. Mens, L.H., Boyle, P.J., Mulder, J.J.: The Clarion electrode positioner: Approximation to the
medial wall and current focussing. Audiol. Neurotol. 8 , 166-175 (2003)
13. Nogueira,W., Bchner, A., Lenarz, Th, Edler, B.: Apsychoacoustic, “NofM”-type speech coding
strategy for cochlear implants. EURASIP J. Adv. Sig. Process. 2005 , 101-672 (2005)
14. Nogueira, W., Litvak, L., Edler, B., Ostermann, J., Bchner, A.: Signal processing strategies
for cochlear implants using current steering. EURASIP J. Advan. Sig. Process. 2009 , 213-531
(2009)
15. De Raeve, L.A.: Longitudinal study on auditory perception and speech intelligibility in deaf
children implanted younger than 18 months in comparison to those implanted at later ages.
Otol Neurotol 31 (8), 1261-1267 (2010)
16. Rattay, F., Leao, R.N., Felix, H.: A model of the electrically excited human cochlear neuron.
II. Influence of the three-dimensional cochlear structure on neural excitability. Hear. Res. 153 ,
64-79 (2001)
17. Saba, R.: “Cohlear implant modelling: Stimulation and power consumption”, Thesis, university
of Southampton. Faculty of Engineering and Environment, Institute of Sound and Vibration
(2012)
18. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken work recog-
nition. IEEE Trans. Acoust. Speech Signal Process. 26 (1), 43-49 (1993)
19. Shannon, R.V., Fu, Q.J., Galvin III, J.: The number of spectral channels required for speech
recognition depends on the difficulty of the listening situation Acta Otolaryngol. Suppl. 552 ,
50-54 (2004)
Search WWH ::




Custom Search