Biology Reference
In-Depth Information
Félix MA, Antony C, Wright M, Maro B (1994) Centrosome assembly in vitro: role of c-tubulin
recruitment in Xenopus sperm aster formation. J Cell Biol 124(1-2):19-31
Franck N, Montembault E, Romé P, Pascal A, Cremet JY, Giet R (2011) CDK11(p58) is required for
centriole duplication and Plk4 recruitment to mitotic centrosomes. PLoS ONE 6(1):e14600
Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C
(2000) Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus
oocytes. J Cell Sci 113:1127-1138
Gard DL, Kirschner MW (1987) Microtubule assembly in cytoplasmic extracts of Xenopus
oocytes and eggs. J Cell Biol 105(5):2191-2201
Gard DL, Hafezi S, Zhang T, Doxsey SJ (1990) Centrosome duplication continues in
cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell
Biol 110(6):2033-2042
Gard DL, Affleck D, Error BM (1995a) Microtubule organization, acetylation, and nucleation in
Xenopus laevis oocytes: II. A developmental transition in microtubule organization during
early diplotene. Dev Biol 168(1):189-201
Gard DL, Cha BJ, Schroeder MM (1995b) Confocal immunofluorescence microscopy of
microtubules, MAPs, and MTOCs during amphibian oogenesis and early development. Curr.
Top. Dev Biol 31: 383-431
Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C (1999a) The Xenopus laevis aurora-
related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein
XlEg5. J Biol Chem 274:15005-15013
Giet R, Uzbekov R, Kireev I, Prigent C (1999b) The Xenopus laevis centrosome aurora/Ipl1-
related kinase. Biol Cell 91:461-470
Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent
centrosome separation leading to the formation of monopolar spindles. Cell 81:95-105
Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, Maro B
(1993) c-tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci
105(Pt 1):157-166
Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010) Cep152 interacts with Plk4
and is required for centriole duplication. J Cell Biol 191:721-729
Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996)
Self-organization of microtubules into bipolar spindles around artificial chromosomes in
Xenopus egg extracts. Nature 382:420-425
Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A (1997) Spindle assembly in
Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
J Cell Biol 138(3):615-628
Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by
isolated basal bodies. J Cell Biol 67(1):105-117
Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E
activity
for
repeated
centrosome
reproduction
in
Xenopus
egg
extracts.
Science
283(5403):851-854
Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase
activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol
188:191-198
Huchon D, Crozet N, Cantenot N, Ozon R (1981) Germinal vesicle breakdown in the Xenopus laevis
oocyte: description of a transient microtubular structure. Reprod Nutr Dev 21(1):135-148
Kallenbach RJ (1983) The induction of de novo centrioles in sea urchin eggs: a possible common
mechanism for centriolar activation among parthenogenetic procedures. Eur J Cell Biol
30(2):159-166
Karsenti E, Newport J, Hubble R, Kirschner M (1984) Interconversion of metaphase and
interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into
Xenopus eggs. J Cell Biol 98(5):1730-1745
Kato KH, Sugiyama M (1971) On the de novo formation of the centriole in the activated sea
urchin egg. Dev Growth Differ 13(4):359-366
Search WWH ::




Custom Search