Environmental Engineering Reference
In-Depth Information
with J = 8kgm 2 , estimate the Lock number and compare the value with the
range of 5-10 which is common for helicopters.
10. Review the statements in Sect. 1.8 regarding the R-dependence of turbine
inertia in the light of the Lock number.
11. Explain why optimum blade element performance occurs when the lift:drag
ratio is maximised rather than, say, where lift is maximised?
12. Explain why the centre of pressure is not important for blade element analysis.
References
1. McCroskey W (1987) A critical assessment of wind tunnel results for the NACA 0012 airfoil.
NASA Technical Memorandum 100019
2. Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number
flyers. Cambridge University Press, New York
3. Giguere P, Selig MS (1998) New airfoils for small horizontal axis wind turbines. J Solar
Energy Eng 120:108-114
4. Giguere P, Selig MS (1997) Low Reynolds number airfoils for small horizontal axis wind
turbines. Wind Eng 21:367-380
5. Kogaki T, Matsumiya H, Iida M, Inaba T, Yoshimizu N, Kieda K (2002) Development and
experimental verification of an airfoil for small wind turbines. In: Proceedings of 2002 global
windpower conference and exhibition
6. Laitone E (1997) Aerodynamic lift at Reynolds numbers below 70,000. AIAA J 34:1941-
1942
7. Sheldahl R, Klimas P (1981) Aerodynamic characteristics of seven symmetrical airfoil
sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis
wind turbines, Sandia National Laboratories, report SAND80-2114. http://windpower.sandia.
gov/abstracts/802114A.pdf . (accessed 5 Aug 2010)
8. Michos A, Bergeles G, Athanassiadis N (1983) Aerodynamic characteristics of NACA 0012
airfoil in relation to wind generators. Wind Eng 7:247-262
9. Ostowari C, Naik D (1984) Post stall studies of untwisted varying aspect ratio blades with a
NACA4415 airfoil section—part I. Wind Eng 8:176-194
10. Devinant
P,
Laverne
T,
Hureau
J
(2002)
Experimental
study
of
wind-turbine
airfoil
aerodynamics in high turbulence. J Wind Eng Ind Aerodyn 90:689-707
11. Zhou Y, Md Mahbub A, Yang HX, Guo H, Wood DH (2010) Fluid forces on a very low
Reynolds number airfoil and their prediction. Int J Heat Fluid Flow 32:329-339
12. Fage AR, Johansen FC (1927) On the flow of air behind an inclined flat plate of infinite span.
Proc R Soc A 116:170-197
13. Wang ZJ (2005) Dissecting insect light. Annu Rev Fluid Mech 37:183-210
14. Ostowari C, Naik D (1985) Post Stall Studies of Untwisted Varying Aspect Ratio Blades with
a NACA44XX Airfoil Sections -Part II. Wind Engineering 9:149-164.
15. Bruining A (1979) Aerodynamic Characteristics of a Curved Plate Airfoil Section at
Reynolds Numbers 60,000 and 100,000 and angles of attack from -10 to +90 degrees, Delft
University of Technology, Report LR-281 http://repository.tudelft.nl/view/ir/uuid:6b92442a-
01f7-4b7c-8d53-c4f10720ff3e/ (accessed 26 Sept, 2010)
16. Taylor GI (1963) The ''rotational inflow factor'' in propeller theory. In: G. Batchelor (ed) The
scientific papers of G.I. Taylor CUP 3:59-65
17. Batchelor
G
(1967)
An
introduction
to
fluid
dynamics.
Cambridge
University
Press,
Cambridge
Search WWH ::




Custom Search