Biomedical Engineering Reference
In-Depth Information
application to detection of epileptiform activity
in the EEG. Clinical Electroencephalography ,
31, 181-191.
F. J. (2001). Comparison of Hilbert transform
and wavelet methods for the analysis of neuronal
synchrony. Journal Neuroscience Method, 111:
83-98.
Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004).
Application of the cross wavelet transform and
wavelet coherence to geophysical time series. Non-
linear Processes in Geophysics , 11, 561-566.
Lee, D. (2002). Analysis of phase-locked oscilla-
tions in multi-channel single-unit spike activity
with wavelet cross-spectrum. Journal Neurosci-
ence Method , 115, 67-75.
Gustafson, J. W., & Felbain-Keramidas, S. L.
(1977). Behavioral and neural approaches to the
function of the mystacial vibrissae. Psychological
Bulletin , 84, 477-488.
Lee, D., (2003). Coherent oscillations in neuronal
activity of the supplementary motor area during
a visuomotor task. Journal Neuroscience, 23,
6798-809.
Hutson, K. A., & Masterton, R. B. (1986). The
sensory contribution of a single vibrissa's cortical
barrel. Journal Neurophysiology 56, 1196-1223.
Li X, Yao X, Fox J, Jefferys JG. Interaction
dynamics of neuronal oscillations analysed us-
ing wavelet transforms. J Neurosci Meth 160:
178-185, 2007.
Jarvis, M. R. & Mitra, P. P. (2001). Sampling
Properties of the Spectrum and Coherency of
Sequences of Action Potentials. Neural Computa-
tion , 13, 717-749.
Lo, F. S,, Guido, W., Erzurumlu, R. S. (1999).
Electrophysiological properties and synaptic
responses of cells in the trigeminal principal
sensory nucleus of postnatal rats. Journal Neu-
rophysiology, 82, 2765-2775.
Jen, P. H. S., Zhou, X., Zhang, J., & Sun, X. (2002).
Brief and short-term corticofugal modulation of
acoustic signal processing in the bat midbrain.
Hear Research , 168, 196-207.
Ma, P. M. (1991). The barrelettes--architectonic
vibrissal representations in the brainstem trigemi-
nal complex of the mouse. I. Normal structural
organization. Journal Comparative Neurology,
309, 161-199.
Killackey, H. P. (1973). Anatomical evidence for
cortical subdivisions based on vertically discrete
thalamic projections from the ventral posterior
nucleus to cortical barrels in the rat. Brain Re-
search , 51, 326-331.
Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability
of spike timing in neocortical neurons. Science .
268, 1503-1506.
Klein, A., Sauer, T., Jedynak, A., & Skrandies, W.
(2006). Conventional and wavelet coherence ap-
plied to sensory-evoked electrical brain activity.
IEEE Trans. Biomed. Engineer. 53, 266-272.
Malmierca, E. & Nuñez, A. (1998). Corticofugal
action on somatosensory response properties of
rat nucleus gracilis cells. Brain Research , 810,
172-180.
Lachaux, J. P, Lutz, A., Rudrauf, D., Cosmelli, D.,
Le Van Quyen, M., Martinerie, J., & Varela, F. J.
(2002). Estimating the time-course of coherence
between single-trial brain signals: an introduction
to wavelet coherence. Neurophysiology Clinic ,
32, 157-174.
Malmierca, E. & Nuñez, A. (2004). Primary soma-
tosensory cortex modulation of tactile responses
in nucleus gracilis cells of rats. European Journal
Neuroscience , 19, 1572-1580.
Le Van Quyen, M., Foucher, J., Lachaux, J. P.,
Rodriguez, E., Lutz, A., Martinerie, J., & Varela,
Malmierca, E. & Nuñez, A. (2007). Corticofugal
modulation of sensory information. Advances
Search WWH ::




Custom Search