Biomedical Engineering Reference
In-Depth Information
Tayfur, G., & Singh, V. P. (2005). Predicting lon-
gitudinal dispersion coefficient in natural streams
by artificial neural network. Journal of Hydraulic
Engineering, 131 (11), 991-1000.
Bowden, G. J., Maier, H. R., & Dandy, G. C.
(2005). Input determination for neural network
models in water resources applications. Part 2.
Case study: forecasting salinity in a river. Journal
of Hydrology, 301 (1-4), 93-107.
Taylor, G. (1954). The dispersion of Matter in
turbulent flow through a pipe. Proceedings of the
Royal Society of London.Series A, Mathematical
and Physical Sciences, 223 (1155), 446-468.
Brath, A., Montanari, A., & Toth, E. (2002).
Neural networks and non-parametric methods
for improving realtime flood forecasting through
conceptual hydrological models. Hydrology and
Earth System Sciences, 6 (4), 627-640.
Tsaih, R., & Chih-Chung, L. (2004). The layered
feed-forward neural networks and its rule extrac-
tion. Paper presented at the Advances in Neural
Networks - ISNN 2004. International Symposium
on Neural Networks, Dalian, China.
Bruen, M., & Yang, J. (2005). Functional networks
in real-time flood forecasting--a novel application.
Advances in Water Resources, 28 (9), 899-909.
Wallis, S. G., & Manson, J. R. (2004). Methods
for predicting dispersion coefficients in rivers.
Water Management, 157 (3), 131-141.
Chang, F.-J., & Chen, Y.-C. (2001). A counter-
propagation fuzzy-neural network modeling ap-
proach to real time streamflow prediction. Journal
of Hydrology, 245 (1-4), 153-164.
Yao, X. (1999). Evolving artificial neural networks.
Proceedings of the IEEE, 87 (9), 1423-1447.
D'Heygere, T., Goethals, P. L. M., & De Pauw, N.
(2003). Use of genetic algorithms to select input
variables in decision tree models for the predic-
tion of benthic macroinvertebrates. Modelling
the structure of acquatic communities: concepts,
methods and problems., 160 (3), 291-300.
ADDITIONAL READING
Aitkenhead, M. J., McDonald, A. J. S., Dawson, J.
J., Couper, G., Smart, R. P., Billett, M., et al. (2003).
A novel method for training neural networks for
time-series prediction in environmental systems.
Ecological Modelling, 162 (1-2), 87-95.
Dawson, C. W., Abrahart, R. J., Shamseldin, A.
Y., & Wilby, R. L. (2006). Flood estimation at
ungauged sites using artificial neural networks.
Journal of Hydrology, 319 (1-4), 391-409.
Baratti, R., Cannas, B., Fanni, A., Pintus, M.,
Sechi, G. M., & Toreno, N. (2003). River flow
forecast for reservoir management through
neural networks. Evolving Solution with Neural
Networks, 55 (3-4), 421-437.
Dibike, Y. B., & Solomatine, D. P. (2001). River
flow forecasting using artificial neural networks.
Physics and Chemistry of the Earth, Part B: Hy-
drology, Oceans and Atmosphere, 26 (1), 1-7.
Bazartseren, B., Hildebrandt, G., & Holz, K. P.
(2003). Short-term water level prediction using
neural networks and neuro-fuzzy approach.
Evolving Solution with Neural Networks, 55 (3-
4), 439-450.
Gardner, J. W., Craven, M., Dow, C., & Hines,
E. L. (1998). The prediction of bacteria type and
culture growth phase by an electronic nose with
a multi-layer perceptron network. Measurement
Science and Technology, 9 (1), 120-127.
Gevrey, M., Dimopoulos, I., & Lek, S. (2003).
Review and comparison of methods to study the
contribution of variables in artificial neural net-
work models. Modelling the structure of acquatic
Bowden, G. J., Dandy, G. C., & Maier, H. R. (2005).
Input determination for neural network models in
water resources applications. Part 1--background
and methodology. Journal of Hydrology, 301 (1-
4), 75-92.
Search WWH ::




Custom Search