Biomedical Engineering Reference
In-Depth Information
Cruse, H. (2002). The functional sense of central
oscillations in walking. Biological Cybernetics,
86(4), 271-280.
Katz, P.S., Sakurai, A., Clemens, S., & Davis,
D. (2004). Cycle period of a network oscilla-
tor is independent of membrane potential and
spiking activity in individual central pattern
generator neurons. Journal of Neurophysiology,
92, 1904-1917.
Delcomyn, F. (1999). Walking robots and the
central and peripheral control of locomotion in
insects. Autonomous Robots, 7(3), 259-270.
Kiehn, O., & Butt, S.J. (2003). Physiological,
anatomical and genetic identification of CPG
neurons in the developing mammalian spinal cord.
Progress in Neurobiology, 70, 347-361.
Ermentrout, G.B., & Chow, C.C. (2002). Model-
ing neural oscillations. Physiology & Behavior ,
77, 629-633.
Ghigliazza, R.M., & Holmes, P. (2004). A Minimal
model of a central pattern generator and moto-
neurons for insect locomotion. SIAM Journal of
Applied Dynamical Systems , 3(4), 671-700.
Latash, M.L. (1993). Control of human movement.
Champaign, IL:Human Kinetics Publishers.
Lewis, M.A., Etienne-Cummings, R., Hartmann,
M.J., Xu, Z.R., & Cohen, A.H. (2003). An in
silico central pattern generator: Silicon oscillator,
coupling, entrainment, and physical computation.
Biological Cybernetics, 88(2), 137-151.
Grillner, S. (2003). The motor infrastructure:
from ion channels to neuronal networks. Nature
Review Neuroscience, 4, 573-586.
Grillner, S., Markram, H., De Schutter, E., Sil-
berberg, G., & LeBeau, F.E. (2005). Microcircuits
in action—from CPGs to neocortex. Trends in
Neurosciences, 28, 525-533.
Magill, R.A. (2001). Motor learning: Concepts
and applications. New York: McGraw-Hill
Companies, Inc.
Marder, E., & Calabrese, R.L. (1996). Principles of
rhythmic motor pattern generation. Physiological
Reviews, 76, 687-717.
Hatsopoulos, N. (1996). Coupling the neural
and physical dynamics in rhythmic movements.
Neural Computation , 8, 567-581.
Marder, E., Bucher, D., Schulz, D.J., & Taylor, A.L.
(2005). Invertebrate central pattern generation
moves along. Current Biology, 15: R685-R699.
Ijspeert, A.J., & Kodjabachian, J. (1999). Evolution
and development of a central pattern generator
for the swimming of a Lamprey. Artificial Life ,
5(3), 247-269.
McCrea, D.A. (2001). Spinal circuitry of senso-
rimotor control of locomotion. Journal of Physiol-
ogy , 533(1), 41-50.
Ijspeert, A.J. (2001). A connectionist central pat-
tern generator for the aquatic and terrestrial gaits
of a simulated salamander. Biological Cybernet-
ics, 84(5), 331-348.
McGeer, T. (1993). Dynamics and control of bi-
pedal locomotion. Journal of Theoretical Biology ,
163, 277-314.
Jing, J., Cropper, E.C., Hurwitz, I., & Weiss, K.R.
(2004). The construction of movement with behav-
ior-specific and behavior-independent modules.
Journal of Neuroscience, 24, 6315-6325.
Nakada, K., Asai, T., & Amemiya, Y. (2003). An
analog CMOS central pattern generator for inter-
limb coordination in quadruped. IEEE Transac-
tions on Neural Networks , 14(5), 1356-1365.
Jones, S.R., & Kopell, N. (2006). Local network
parameters can affect inter-network phase lags in
central pattern generators. Journal of Mathemati-
cal Biology, 52(1), 115-140.
Norris, B.J., Weaver, A.L., Morris, L.G., Wen-
ning, A., GarcĂ­a, P.A., & Calabrese, R.L. (2006).
Search WWH ::




Custom Search