Biology Reference
In-Depth Information
168. Diggle PJ, Tawn JA, Moyeed RA. Model-based geostatistics. J R Stat Soc Ser C Appl Stat
1998; 47 :299
e
350.
169. Brooker S, Kabatereine NB, Tukahebwa EM, Kazibwe F. Spatial analysis of the
distribution of intestinal nematode infections in Uganda. Epidemiol Infect 2004;
132 :1065
71.
170. Pullan RL, Gething PW, Smith JL, et al. Spatial modelling of soil-transmitted helminth
infections in Kenya: a disease control planning tool. PLoS Negl Trop Dis 2011; 5 :e958.
171. Clements ACA, Deville M-A, Ndayishimiye O, Brooker S, Fenwick A. Spatial
co-distribution of neglected tropical diseases in the east African great lakes region:
revisiting the justification for
e
integrated control. Tr o p Me d
I n t He a l t h 2010;
207.
172. Brooker S, Singhasivanon P, Waikagul J, et al. Mapping soil-transmitted helminths in
Southeast Asia and implications for parasite control. Southeast Asian J Trop Med Public
Health 2003; 34 :24
15 :198
e
36.
173. Diggle PJ, Ribeiro PJ. Model-based Geostatistics. New York: Springer; 2007.
174. Magalh˜es RJS, Clements ACA, Patil AP, Gething PW, Brooker S. The applications of
model-based geostatistics in helminth epidemiology and control. Adv Parasitol
2011; 74 :267
e
96.
175. Weaver HJ, Hawdon JM, Hoberg EP. Soil-transmitted helminthiases: implications of
climate change and human behavior. Trends Parasitol 2010; 26 :574
e
81.
176. Crompton DW, Savioli L. Intestinal parasitic infections and urbanization. Bull World
Health Organ 1993; 71 :1
e
7.
177. Brooker S, Hay SI, Tcheum Tchuente L-A, Ratard R. Using NOAA-AVHRR data to
model human helminth distributions in planning disease control in Cameroon, West
Africa. Photogramm Eng Remote Sensing 2002; 68 :175
e
9.
178. Clements ACA, Moyeed R, Brooker S. Bayesian geostatistical prediction of the
intensity of
e
infection with Schistosoma mansoni
in East Africa. Parasitology
2006; 133 :711
e
9.
179. World Health Organization. Preventative chemotherapy in human helminthiasis. coordi-
nated use of anthelmintic drugs in control interventions: a manual for health professionals and
programme managers. Geneva: World Health Organization; 2006.
180. Riley S. Large-scale spatial-transmission models of
infectious disease. Science
301.
181. Gurarie D, Seto EYW. Connectivity sustains disease transmission in environments with
low potential for endemicity: modelling schistosomiasis with hydrologic and social
connectivities. J R Soc Interface 2009; 6 :495
2007; 316 :1298
e
508.
182. Gurarie D, King CH. Heterogeneous model of schistosomiasis transmission and long-
term control: the combined influence of spatial variation and age-dependent factors on
optimal allocation of drug therapy. Parasitology 2005; 130 :49
e
65.
183. Bates DM, Watts DG. Nonlinear Regression Analysis. New York: Wiley; 1988.
184. Hadeler KP, Dietz K. Nonlinear hyperbolic partial differential equations for the
dynamics of parasite populations. Comput Math Appl 1982; 9 :415
e
30.
185. Dietz K. Overall population patterns in the transmission cycle of infectious disease
agents. In: Anderson RM, May RM, editors. Population Biology of Infectious Diseases.
New York: Springer; 1982. p. 87
e
102.
186. Bolker BM. Ecological Models and Data in R. Princeton: Princeton University Press; 2008.
187. Anderson RM. Mathematical models of host
e
helminth parasite interactions. In:
Usher MB, Williamson MH, editors. Ecological Stability. London: Chapman & Hall;
1974.
188. Anderson RM. The dynamics and control of direct life-cycle helminth parasites. In:
Barigozzi C, editor. Vito Volterra Symposium on Mathematical Models in Biology. New
York: Springer; 1980. p. 278
e
e
322.
Search WWH ::




Custom Search