Biology Reference
In-Depth Information
58. Johnson CD, Stretton AOW. Neural control of locomotion in Ascaris: anatomy,
physiology and biochemistry. In: Zuckerman BM, editor. Nematodes as Bological Models.
New York: Academic Press, Inc.; 1980. p. 159
95.
59. Johnson CD, Stretton AO. GABA-immunoreactivity in inhibitory motor neurons of the
nematode Ascaris. J Neurosci 1987;7(1):223
e
35.
60. Guastella J, Johnson CD, Stretton AO. GABA-immunoreactive neurons in the nema-
tode Ascaris. J Comp Neurol 1991;307(4):584
e
97.
61. Schuske K, Beg AA, Jorgensen EM. The GABA nervous system in C. elegans. Trends
Neurosci 2004;27(7):407
e
14.
62. Brownlee DJ, Fairweather I, Johnston CF, et al. Immunocytochemical demonstration
of peptidergic and serotoninergic components in the enteric nervous system of
the roundworm, Ascaris suum (Nematoda, Ascaroidea). Parasitology 1994;108(1):
89
e
103.
63. Johnson CD, Reinitz CA, Sithigorngul P, et al. Neuronal localization of serotonin in the
nematode Ascaris suum. J Comp Neurol 1996;367(3):352
e
60.
64. Davis RE. Neurophysiology of glutamatergic signaling and anthelmintic action in
Ascaris suum: pharmacological evidence for a kainate receptor. Parasitology 1998;116:
471
e
86.
65. Davis RE. Action of excitatory amino acids on hypodermis and the motornervous
system of Ascaris suum: pharmacological evidence for a glutamate transporter. Para-
sitology 1998;116:487
e
500.
66. Davis RE, Stretton AO. Extracellular recordings from the motor nervous system of the
nematode, Ascaris suum. J Comp Physiol A 1992;171(1):17
e
28.
67. Takemoto T. Isolation and structural identification of naturally occurring excitatory
amino acids. In: McGeer EG, Olney JW, McGeer P, editors. Kainic Acid as a Tool in
Neurobiology. New York: Raven Press; 1978. p. 1
e
e
15.
68. Bargmann CI. Neurobiology of
the Caenorhabditis elegans genome. Science 1998;
33.
69. Greenwood K, Williams T, Geary T. Nematode neuropeptide receptors and their
development as anthelmintic screens. Parasitology 2005;131. S169
282(5396):2028
e
77.
70. Cowden C, Stretton AOW, Davis RE. AF1, a sequenced bioactive neuropeptide isolated
from the nematode Ascaris suum. Neuron 1989;2:1465
e
73.
71. Cowden C, Stretton AOW. AF2, an Ascaris neuropeptide: isolation, sequence, and
bioactivity. Peptides 1993;14:423
e
30.
72. Cowden C, Stretton AOW. Eight novel FMRFamide-like neuropeptides isolated from
the nematode Ascaris suum. Peptides 1995;16:491
e
500.
73. McVeigh P, Leech S, Mair GR, et al. Analysis of FMRFamide-like peptide (FLP)
diversity in phylum Nematoda. Int J Parasitol 2005;35:1043
e
60.
74. McVeigh P, Alexander-Bowman S, Veal E, et al. Neuropeptide-like protein diversity in
phylum Nematoda. Int J Parasitol 2008;38(13):1493
e
503.
75. Yew JY, Kutz KK, Dikler S, et al. Mass spectrometric map of neuropeptide expression
in Ascaris suum. J Comp Neurol 2005;8:396
e
413.
76. Li L, Garden RW, Romanova EV, et al. In situ sequencing of peptides from bio-
logical tissues and single cells using MALDI-PSD/CID analysis. Anal Chem 1999;
71:5451
e
8.
77. Neupert S, Predel R. Mass spectrometric analysis of single identified neurons of an
insect. Biochem Biophys Res Commun 2005;327(3):640
e
5.
78. Jarecki JL, Andersen K, Konop CJ, et al. Mapping neuropeptide expression by spec-
trometry in single dissected identified neurons from the dorsal ganglion of the
nematode Ascaris suum. ACS Chem Neurosci 2010;1:505
e
19.
79. Marder E. From biophysics to models of network function. Ann Rev Neurosci 1998;21:
25
e
e
45.
Search WWH ::




Custom Search