Biology Reference
In-Depth Information
15. Rufener L, M ¨ ser P, Roditi I, et al. Haemonchus contortus acetylcholine receptors of the
DEG-3 subfamily and their role in sensitivity to monepantel. PLoS Pathog 2009;
5(4):e1000380.
16. Rufener L, Keiser J, Kaminsky R, et al. Phylogenomics of ligand-gated ion channels
predicts monepantel effect. PLoS Pathog 2010;6(9). e1001091.
17. Geary TG, Moreno Y. Macrocyclic lactone anthelmintics: spectrum of activity and
mechanism of action. Curr Pharm Biotechnol 2012;13(6):866
72.
18. Kr ¨ cken J, Harder A, Jeschke P, et al. Anthelmintic cyclooctadepsipeptides: complex in
structure and mode of action. Trends Parasitol 2012;28(9):385
e
94.
19. Martin RJ, Buxton SK, Neveu C, et al. Emodepside and SL0-1 potassium channels:
a review. Exp Parasitol 2012;132(1):40
e
6.
20. Kass IS, Wang CC, Walrond JP, et al. Avermectin B1a, a paralyzing anthelmintic that
affects interneurons and inhibitory motoneurons in Ascaris. Proc Natl Acad Sci USA
1980;77(10):6211
e
5.
21. Kass IS, Stretton AO, Wang CC. The effects of avermectin and drugs related to
acetylcholine and 4-aminobutyric acid on neurotransmission in Ascaris suum. Mol
Biochem Parasitol 1984;13(2):213
e
25.
22. Martin RJ, Valkanov MA, Dale VM, et al. Electrophysiology of Ascaris muscle and
anti-nematodal drug action. Parasitology 1996;113:S137
e
56.
23. Zinser EW, Wolf ML, Alexander-Bowman SJ, et al. Anthelmintic paraherquamides are
cholinergic antagonists in gastrointestinal nematodes and mammals. J Vet Pharmacol
Ther 2002;25(4):241
e
50.
24. Holden-Dye L, Crisford A, Welz C, et al. Worms take to the slow lane: a perspective on
the mode of action of emodepside. Invert Neurosci 2012;12(1):29
e
36.
25. Maule AG, Mousley A, Marks NJ, et al. Neuropeptide signaling systems
e
e
potential
58.
26. Raymond V, Sattelle DB. Novel animal-health drug targets from ligand-gated chloride
channels. Nat Rev Drug Discov 2002;1(6):427
drug targets for parasite and pest control. Curr Top Med Chem 2002;2(7):733
e
36.
27. McVeigh P, Atkinson L, Marks NJ, et al. Parasite neuropeptide biology: seeding
rationale drug target selection. Int J Parasitol Drugs Drug Resist 2012;2:76
e
91.
28. Jex AR, Liu S, Li B, et al. Ascaris suum draft genome. Nature 2011;479(7374):
529
e
33.
29. Weimann JM, Marder E. Switching neurons are integral members of multiple oscilla-
tory networks. Curr Biol 1994;4:896
e
902.
30. Davis RE, Stretton AO. The motor nervous system of Ascaris: electrophysiology and
anatomy of the neurons and their control by neuromodulators. Parasitology 1996;
113:S97
e
117.
31. Bargmann CI. Beyond the connectome: how neuromodulators shape neural circuits.
Bioessays 2012;34(6):458
e
65.
32. Voltzenlogel E. Untersuchen ¨ ber den anatomischen under histologischen bau des
hinterendes von Ascaris megalocephala und Ascaris lumbricoides. Zool Jahrb Abt Anat 1902;
16:481
e
510.
33. Otto A. Ueber das Nervensystem der Eingeweidew ¨ rmer. Mag Entdeck Ges Naturk
1816;7:223
e
33.
34. Stretton AO. Anatomy and development of the somatic musculature of the nematode
Ascaris. J Exp Biol 1976;64(3):773
e
88.
35. Davis RE, Stretton AO. Passive membrane properties of motorneurons and their
role in long-distance signaling in the nematode Ascaris.
e
J Neurosci 1989;9(2):
14.
36. Davis RE, Stretton AO. Signaling properties of Ascaris motorneurons: graded active
responses, graded synaptic transmission, and tonic transmitter release. J Neurosci 1989;
9(2):415
403
e
e
25.
Search WWH ::




Custom Search