Chemistry Reference
In-Depth Information
119. Lopez CF et al (2002) Computer simulation studies of biomembranes using a coarse grain
model. Comput Phys Commun 147(1-2):1-6
120. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid
simulations. J Phys Chem B 108(2):750-760
121. Marrink SJ, Mark AE (2003) Molecular dynamics simulation of the formation, structure, and
dynamics of small phospholipid vesicles. J Am Chem Soc 125(49):15233-15242
122. Marrink SJ, Mark AE (2004) Molecular view of hexagonal phase formation in phospholipid
membranes. Biophys J 87(6):3894-3900
123. Marrink SJ et al (2007) The MARTINI force field: Coarse grained model for biomolecular
simulations. J Phys Chem B 111(27):7812-7824
124. Molinero V, Goddard WA (2004) M3B: a coarse grain force field for molecular simulations
of malto-oligosaccharides and their water mixtures. J Phys Chem B 108(4):1414-1427
125. Vaidehi N, Goddard WA (2000) Domain motions in phosphoglycerate kinase using hierar-
chical NEIMO molecular dynamics simulations. J Phys Chem A 104(11):2375-2383
126. Cagin T et al (2001) Multiscale modeling and simulation methods with applications to
dendritic polymers. Comput Theor Polym Sci 11(5):345-356
127. Elezgaray J, Laguerre M (2006) A systematic method to derive force fields for coarse-
grained simulations of phospholipids. Comput Phys Commun 175(4):264-268
128. Hunger J, Huttner G (1999) Optimization and analysis of force field parameters by combi-
nation of genetic algorithms and neural networks. J Comput Chem 20(4):455-471
129. Hunger J et al (1998) How to derive force field parameters by genetic algorithms: modelling
tripod-Mo(CO)(3) compounds as an example. Eur J Inorg Chem 6:693-702
130. Jaramillo-Botero A et al (2010) First-principles based approaches to nano-mechanical and
biomimetic characterization of polymer-based hydrogel networks for cartilage scaffold-
supported therapies. J Comput Theor Nanosci 7(7):1238-1256
131. Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. In:
Polymers for regenerative medicine. Springer-Verlag, Berlin, pp 95-144
132. Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of
biomechanics. J Biomech Eng Trans Asme 122(6):570-575
133. Guilak F (2000) The deformation behavior and viscoelastic properties of chondrocytes in
articular cartilage. Biorheology 37(1-2):27-44
134. Guilak F, Butler DL, Goldstein SA (2001) Functional tissue engineering - the role of
biomechanics in articular cartilage repair. Clin Orthop Relat Res 391:S295-S305
135. Gong JP et al (2003) Double-network hydrogels with extremely high mechanical strength.
Adv Mater 15(14):1155-1158
136. Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the
three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114(8):
3659-3661
137. Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts - a molecular-
dynamics simulation. J Chem Phys 92(8):5057-5086
138. Blanco M, Jaramillo-Botero A, Goddard W III (2010) The percolation limit near the Flory-
Stockmayer transition in polymer hydrogel networks. California Institute of Technology,
Pasadena
Search WWH ::




Custom Search