Chemistry Reference
In-Depth Information
Solvent effect
String method
van der Waals interaction
Wannier orbitals
Water
Wavelets
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2 Ab Initio Molecular Dynamics Simulations in a Nutshell ................................ 112
2.1 Molecular Dynamics Simulations: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.2 Obtaining the Forces and Integrating
the Equations of Motion . . . ........................................................... 113
2.3 Born-Oppenheimer Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.4 Car-Parrinello Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.5 Generalization of the Car-Parrinello and Born-Oppenheimer Molecular Dynamics
Approaches ............................................................................ 117
3 Faster, Larger, and More Accurate: Recent Developments ............................... 121
3.1 Massively Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3 New Developments in Accuracy . .................................................... 124
3.4 New Integration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5 Enhanced Sampling . .................................................................. 130
3.6 Properties: IR, NMR and EXAFS .................................................... 133
4 Applications in Chemical Engineering . . .................................................. 136
4.1 Wavefunction Analysis . .............................................................. 136
4.2 Properties of the Vapor Phase, Liquids, Mixtures, and Solvent Effects . . .......... 137
4.3 Chemical Reactions ................................................................... 141
4.4 Electrochemistry ...................................................................... 143
5 Summary . . .................................................................................. 147
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Abbreviations
AIMD
Ab initio molecular dynamics; molecular dynamics with electronic
structure calculations on the fly
ASPC
Always stable predictor-corrector algorithm
BOMD
Born-Oppenheimer molecular dynamics; molecular dynamics with
electronic structure calculations on the fly, diagonalization in each step
CPMD
Car-Parrinello molecular dynamics; molecular dynamics with elec-
tronic structure calculations on the fly, orthogonalization in each step
otherwise the coefficients of the wavefunction are propagated like the
nuclear positions
CV
Collective variables
DFT
Density functional theory; static quantum chemical method using
functionals of the electronic density to account for electron correlation
DVR
Discrete variable representation
ECP
Effective core potential also called pseudopotential
FBR
Finite basis representation
FES
Free energy surface
FFT
Fast Fourier transformation
Search WWH ::




Custom Search