Chemistry Reference
In-Depth Information
139. Schneider T, Stoll E (1978) Molecular dynamics study of a three-dimensional n-component
model for distortive phase transitions. Phys Rev B 17:1302-1322
140. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or tempera-
ture. J Chem Phys 72:2384-2393
141. Hoover WG, Ladd AJC, Moran B (1982) High strain rate plastic flow studied via non-
equilibrium molecular dynamics. Phys Rev Lett 48:1818-1820
142. Evans DJ, Hoover WG, Failor BH, Moran B, Ladd AJC (1983) Nonequilibrium molecular
dynamics via Gauss's principle of least constraint. Phys Rev A 28:1016-1021
143. Evans DJ, Morriss GP (1983) The isothermal isobaric molecular dynamics ensemble. Phys
Lett A 98:433-436
144. Evans DJ, Morriss GP (1984) Non-Newtonian molecular dynamics. Phys Rep 1:297-344
145. Tuckerman ME, Mundy CJ, Martyna GJ (1999) On the classical statistical mechanics of non-
Hamiltonian systems. Europhys Lett 45:149-155
146. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular
dynamics with coupling to an external bath. J Chem Phys 81:3684-3690
147. Nos ´ S (1984) A unified formulation of the constant temperature molecular dynamics
method. J Chem Phys 81:511-519
148. Nos ´ S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol
Phys 52:255-268
149. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A
31:1696-1697
150. Jakobtorweihen S, Verbeeck MG, Lowe CP, Keil FJ, Smit B (2005) Understanding the
loading dependence of self-diffusion in carbon nanotubes. Phys Rev Lett 95:044501-1/4
151. Jakobtorweihen S, Lowe CP, Keil FJ, Smit B (2006) A novel algorithm to model the
influence of host lattice flexibility in molecular dynamics simulations: loading dependence
of self-diffusion in carbon nanotubes. J Chem Phys 124:154706-1/13
152. Jakobtorweihen S, Lowe CP, Keil FJ, Smit B (2007) Diffusion of chain molecules and
mixtures in carbon nanotubes: the effect of host lattice flexibility and theory of diffusion
in the Knudsen regime. J Chem Phys 127:024904-1/11
153. Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin-glasses. Phys Rev
Lett 57:2607-2609
154. Woods CJ, Esser JW, King MA (2003) The development of replica-exchange based free-
energy methods. J Phys Chem B 107:13703-13710
155. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events.
Phys Rev Lett 78:3908-3912
156. Laio A, Parinello M (2002) Escaping the free energy minima. Proc Natl Acad Sci
99:12562-12566
157. Carter E, Cicotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for
the simulation of rare events. Chem Phys Lett 156:472-477
158. Sprik M, Cicotti G (1998) Free energy from constrained molecular dynamics. J Phys Chem
109:7737-7744
159. Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann
sampling - application to subcritical Lennard-Jones fluid. Chem Phys Lett 28:578-581
160. Rosso L, Tuckerman ME (2002) An adiabatic molecular dynamics method for the calcula-
tion of free energy profiles. Mol Simul 28:91-112
161. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry
and biology. Springer, Heidelberg
162. Washel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric, electro-
static and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol
103:227-249
163. Sierka M, Sauer J (2005) Hybrid quantum mechanics/molecular mechanics methods and
their application. In: Yip S (ed) The handbook of materials modeling, Part A. Methods.
Springer, Dordrecht, pp 241-258
Search WWH ::




Custom Search