Biology Reference
In-Depth Information
101. Selevsek N, Matondo M, Sanchez Carbayo M, et al.
Systematic quanti
115. Tully SE, Cravatt BF. Activity-based probes that target
functional subclasses of phospholipases in proteomes.
J Am Chem Soc 2010;
cation of peptides/proteins in
urine using selected reaction monitoring. Proteomics
2011;
:3264 e 5.
116. Simon GM, Cravatt BF. Activity-based proteomics of
enzyme superfamilies: serine hydrolases as a case
study. J Biol Chem 2010;
132
:1135 e 47.
102. Zhang Y, Li Y, Qiu F, et al. Comparative analysis of
the human urinary proteome by 1D SDS-PAGE and
chip-HPLC-MS/MS identi
11
:11051 e 5.
285
cation of the AACT puta-
tive urinary biomarker. J Chromatogr B Analyt Technol
Biomed Life Sci 2010;
117.
Johnson DS, Weerapana E, Cravatt BF. Strategies for
discovering and derisking covalent,
irreversible
:3395 e 401.
103. Lopez-Farre AJ, Zamorano-Leon JJ, Azcona L, et al.
Proteomic changes related to
:949 e 64.
118. Hekmat O, He S, Warren RAJ, et al. A mechanism-
based ICAT strategy for comparing relative expres-
sion and activity levels of glycosidases in biological
systems. J Proteome Res 2008;
enzyme inhibitors. Future Med Chem 2010;
878
2
circulating
platelets in the acute coronary syndrome. Proteomics
2011;
bewildered
:3335 e 48.
104. Kim OY, Shin MJ, Moon J, et al. Plasma ceruloplasmin
as a biomarker for obesity: a proteomic approach. Clin
Biochem 2011;
:3282 e 92.
119. Weerapana E, Wang C, Simon GM, et al. Quantitative
reactivity pro
11
7
ling predicts functional cysteines in
proteomes. Nature 2010;
:351 e 6.
105. Na K, Lee EY, Lee HJ, et al. Human plasma carbox-
ylesterase 1, a novel serologic biomarker candidate for
hepatocellular carcinoma. Proteomics 2009;
44
:790 e 5.
120. Fleischer TC, Murphy BR, Flick JS, et al. Chemical
proteomics identi
468
es Nampt as the target of CB30865,
an orphan cytotoxic compound. Chem Biol 2010;
:3989 e 99.
106. Portelius E, Fortea J, Molinuevo JL, et al. The amyloid-
beta isoform pattern in cerebrospinal
9
17
:
659 e 64.
121. Altun M, Kramer HB, Willems LI, et al. Activity-based
chemical proteomics accelerates inhibitor develop-
ment for deubiquitylating enzymes. Chem Biol 2011;
fluid in familial
PSEN1 M139T- and L286P-associated Alzheimer
'
s
:1111 e 5.
107. Zhang J, Guy MJ, Norman HS, et al. Top-down
quantitative proteomics identi
disease. Mol Med Report 2012;
5
18
:
1401 e 12.
122. Schirle M, Bantscheff M, Kuster B. Mass spectrometry-
based proteomics in preclinical drug discovery. Chem
Biol 2012;
ed phosphorylation of
cardiac troponin I as a candidate biomarker for
chronic heart failure. J Proteome Res 2011;
:4054 e 65.
108. Zhang Q, Monroe ME, Schepmoes AA, et al. Compre-
hensive identi
:72 e 84.
123. Luo Y, Blex C, Baessler O, et al. The cAMP capture
compound mass spectrometry as a novel tool for tar-
geting cAMP-binding proteins: from protein kinase
A to potassium/sodium hyperpolarization-activated
cyclic nucleotide-gated channels. Mol Cell Proteomics
2009;
10
19
cation of glycated peptides and their
glycation motifs in plasma and erythrocytes of control
and diabetic subjects. J Proteome Res 2011;
:3076 e 88.
109. Hammoud ZT, Mechref Y, Hussein A,
10
et al.
Comparative
ling in esophageal
adenocarcinoma. J Thorac Cardiovasc Surg 2010;
glycomic pro
:2843 e 56.
124. Fischer JJ, Graebner Baessler OY, Dalhoff C, et al.
Comprehensive identi
8
:
139
1216 e 23.
110. Charro N, Hood BL, Faria D, et al. Serum proteomics
signature of cystic
cation of staurosporine-binding
kinases in the hepatocyte cell line HepG2 using capture
compound mass spectrometry (CCMS). JProteomeRes
2010;
fibrosis patients: a complementary
2-DE and LC-MS/MS approach. J Proteomics 2011;
:
:806 e 17.
125. Dalhoff C, Huben M, Lenz T, et al. Synthesis of
S-adenosyl-L-homocysteine capture compounds for
selective photoinduced isolation of methyltransferases.
Chembiochem 2010;
74
9
110 e 26.
111.
Jiang H, Ramos AA, Yao X. Targeted quantitation of
overexpressed and endogenous cystic
fibrosis trans-
membrane conductance regulator using multiple reac-
tion monitoring tandemmass spectrometry and oxygen
stable isotope dilution. Anal Chem 2010;
:256 e 65.
126. Schiess R, Wollscheid B, Aebersold R. Targeted pro-
teomic strategy for clinical biomarker discovery. Mol
Oncol 2009;
11
:336 e 42.
112. Liu Y, Patricelli MP, Cravatt BF. Activity-based
protein pro
82
:33 e 44.
127. Addona TA, Abbatiello SE, Schilling B, et al. Multi-
site assessment of the precision and reproducibility
of multiple reaction monitoring-based measure-
ments of proteins in plasma. Nat Biotechnol 2009;
3
ling: the serine hydrolases. Proc Natl Acad
Sci USA 1999;
:14694 e 9.
113. Cravatt BF, Wright AT, Kozarich JW. Activity-based
protein pro
96
ling: from enzyme chemistry to proteomic
chemistry. Annu Rev Biochem 2008;
27
:
:383 e 414.
114. Nomura DK, Dix MM, Cravatt BF. Activity-based
protein pro
77
633 e 41.
128. Anderson NL, Anderson NG. The human plasma
proteome: history, character, and diagnostic prospects.
Mol Cell Proteomics 2002;
ling for biochemical pathway discovery
in cancer. Nat Rev Cancer 2010;
:630 e 8.
:845 e 67.
10
1
Search WWH ::




Custom Search