Biology Reference
In-Depth Information
21. Banks RE, Stanley AJ, Cairns DA, et al. In
uences of
blood sample processing on low-molecular-weight
proteome identi
37. Wilson ID, Nicholson JK, Castro-Perez J, et al. High
resolution
liquid chromatog-
raphycoupledtoa-TOFmassspectrometryasatool
for differential metabolic pathway pro
ultra performance
ed by surface-enhanced laser desorp-
tion/ionization mass spectrometry. Clin Chem 2005;
51
:
ling in
functional genomic studies. JProteomeRes 2005;
1637 e 49.
22. Zolg W. The proteomic search for diagnostic biomarkers:
lost in translation? Mol Cell Proteomics 2006;
4
:
591 e 8.
38. Kim JW, Lee G, Moon SM, et al. Metabolomic screening
and star pattern recognition by urinary amino acid
pro
:1720 e 6.
23. Tuck MK, Chan DW, Chia D, et al. Standard operating
procedures for serum and plasma collection: early
detection research network consensus statement stan-
dard operating procedure integration working group.
J Proteome Res 2009;
5
le analysis from bladder cancer patients. Metab-
olomics 2010;
:202 e 6.
39. Issaq HJ. Role of Separation science in biomarker discovery:
opportunities and pitfalls . Pittsburgh Conference on
Analytical Chemistry and Applied Spectroscopy;
March 2011.
40. Kim K, Aronov P, Zakharkin SO, et al. Urine metab-
olomics analysis for kidney cancer detection and
biomarker discovery. Mol Cell Proteomics 2009;
6
:113 e 7.
24. http://www.fda.gov/cdrh/clia .
25. The
8
Plasma
Proteome
Institute.
http://www
.plasmaproteome.org .
26. Zhou M, Lucas A, Chan KC, et al. An investigation into
the
human
serum
interactome.
Electrophoresis
8
:
:1289 e 98.
27. Xiao Z, Conrads TP, Lucas DA, et al. Direct
ampholyte-free liquid-phase isoelectric peptide
focusing: application to the human serum proteome.
Electrophoresis 2004;
2004;
25
558 e 70.
41. Kind T, Tolstikov V, Fiehn O, Weiss RH. A compre-
hensive urinary metabolomic approach for identifying
kidney cancer. Anal Biochem 2007;
:185 e 95.
42. Perroud B, Lee J, Valkova N, Dhirapong A, et al.
Pathway analysis of kidney cancer using proteomics
and metabolic pro
363
:128 e 33.
28. Chan KC, Lucas DA, Hise D, et al. Analysis of the
human serum proteome. Clinical Proteomics 2004;
25
1
ling. Mol Cancer 2006;
5
:
:64.
43. Sreekumar A, Poisson LM, Rajendiran TM, et al.
Sarcosine in urine after digital rectal examination
failsasamarkerinprostatecancerdetectionand
identi
101 e 12.
29. Tirumalai RS, Chan KC, Prieto DA, et al. Character-
ization of the low molecular weight human serum
proteome. Mol Cell Proteomics 2003;
:1096 e 103.
30. Anderson NL, Polanski M, Pieper R, et al. The human
plasma proteome: a nonredundant list developed by
combination of four separate sources. Mol Cell Proteo-
mics 2004;
2
cation of aggressive tumors. Nature 2009;
457
:
910 e 4.
44.
Jentzmik F, Stephan C, Miller K, et al. Sarcosine in urine
after digital rectal examination fails as a marker in
prostate cancer detection and identi
:311 e 26.
31. Buscher JM, Czernik Ewald JC, et al. Cross-platform
comparison of methods for quantitative metabolomics
of primary metabolism. Anal Chem 2009;
3
cation of aggres-
:12 e 8.
45. Nicholson JK, Lindon JC, Holmes E.
sive tumours. European Urol 2010;
58
:
understanding the metabolic responses of living
systems to pathophysiological stimuli via multivariate
statistical analysis of biological NMR spectroscopic
data. Xenobiotica 1999;
Metabonomics
:2135 e 43.
32. Liu H, Sadygov RG, Yates JR. A model for random
sampling and estimation of relative protein abundance
in shotgun proteomics. Anal Chem 2004;
81
:4193 e 201.
33. Elias J, Haas W, Faherty BK, Gygi SP. Comparative
evaluation of mass spectrometry platforms used in
large-scale proteomics
76
:1181 e 9.
46. Holmes E, Antti H. Chemometric contributions to the
evolution of metabonomics: mathematical solutions to
characterizing and interpreting complex biological
NMR spectra. Analyst 2002;
29
investigations. Nat Methods
:667 e 75.
34. Faca V, Pitteri J, Newcomb L, et al. Contribution of
protein fractionation to depth of analysis of the serum
and plasma proteomes. J Proteome Res 2007;
2005;
2
:1549 e 57.
47. Keun H, Ebbels T, Antti H, et al. Improved analysis of
multivariate data by variable stability scaling: applica-
tion to NMR-based metabolic pro
127
:3558 e 65.
35. Gika HG, Theodoridis GA, Earll M, et al. Does the mass
spectrometer de
6
ling. Anal Chim Acta
:265 e 76.
48. Vapnick V. Estimation of dependences based on empirical
data . New York: Springer Verlag; 1982.
49. Mehadvan S, Shah SL, Marrie TJ, Slupsky CM. Analysis
of metabolomic data using support vector machines.
Anal Chem 2008;
2003;
490
ne the marker? A comparison of
global metabolite pro
ling data generated simulta-
neously via UPLC-MS on two different mass spec-
trometers. Anal Chem 2010;
:8226 e 34.
36. Liu ZY, Phillips JB. Comprehensive two-dimensional
gas chromatography using an on-column thermal
modulator interface. J Chromatogr Sci 1991;
82
:7562 e 70.
50. Van QN, Issaq HJ, Jiang Q, et al. J Proteome Res 2008;
80
7
:
29
:227 e 31.
630 e 9.
Search WWH ::




Custom Search