Environmental Engineering Reference
In-Depth Information
interaction Hamiltonian. We assume that the system is uniform, param-
agnetic or ferromagnetically ordered, continue to utilize the simple free-
electron model, and replace ( g
1) I ( n k ,n k )by j ( k k +
). The MF
part (5.7.7) of the Hamiltonian may lead to a modification ε k σ
τ
ε k σ of
the electronic band-states, but we can neglect this difference to leading
order, and since the MF Hamiltonian does not lead to transitions be-
tween electronic states, we can replace J iz by
J iz = J iz
J z
in
H int ,
and obtain
W ( k σ, k σ )=
−∞
d ( ) δ (
ε k σ + ε k σ )
h
if
N 2
jj
2 π
1
2 e −i ( k k ) · ( R j R j )
j ( k k )
×
P i
|
|
<i
J j |
J j
J j |
J j
×
|
f><f
|
|
i> δ σ↑ δ σ + <i
|
f><f
|
|
i> δ σ↓ δ σ
i> ( δ σ↑ δ σ + δ σ↓ δ σ ) δ ( + E i
J j z |
J jz |
E f ) ,
(5 . 7 . 56)
accounting explicitly for the condition on by the integral over the
first δ -function. Using the same procedure as in the calculation of the
neutron-scattering cross-section, when going from (4.1.16) to (4.2.1-3),
we may write this:
+ <i
|
f><f
|
W ( k σ, k σ )= 2
N h
1
j ( k k )
2
d ( ) δ (
ε k σ + ε k σ )
e −βhω |
|
1
−∞
× χ + ( k k ) δ σ↑
+ χ +
( k k ) δ σ↓
δ σ
δ σ
) .
+ χ zz ( k k )( δ σ↑
δ σ
+ δ σ↓
δ σ
Introducing this expression into (5.7.55), and using φ k σ
= k · u and
k = k q τ
, we proceed as in the derivation of eqn (5.7.36) for
Im χ +
c . el . ( q ) , obtaining
N
k
1
f k (1
f k q ) δ (
ε k + ε k q )=
dk k 2 1
1
) 1
) δ
m
µ h 2 qk
V
N (2 π ) 2
dµf ( ε k
f ( ε k
∆+ ε q
0
h 4 q f ( ε ) 1
) =
m 2
h 4 q
V
N (2 π ) 2
e βhω
m 2
V
N (2 π ) 2
=
f ( ε
1 ,
2
where k F ↑
ε F ). The denom-
inator in (5.7.55) may be calculated in a straightforward fashion and
k F ↓
<q<k F ↑
+ k F ↓
(when k B T
Search WWH ::




Custom Search