Environmental Engineering Reference
In-Depth Information
γ -strain part of the magnetoelastic Hamiltonian is given by eqn (2.2.23):
H γ =
i
2
c γ ( γ 1 + γ 2 )
Q 2 ( J i ) γ 1 + Q 2
B γ 2 {
( J i ) γ 2 }
2
(5 . 4 . 1)
( J i ) γ 2 } .
Q 4 ( J i ) γ 1
Q 4
4
B γ 4 {
The equilibrium condition, ∂F/∂ γ = 0, leads to eqn (2.2.25) for the
static strains γ . The static-strain variables are distinguished by a bar
from the dynamical contributions γ
γ . The expectation values of
the Stevens operators may be calculated by the use of the RPA theory
developed in the preceding section, and with θ = π/ 2 we obtain, for
instance,
2
= J (2) I 5 / 2 [ σ ] η 1
Q 2
( O 2 + O 2 )cos2 φ +2 O 1
=
sin 2 φ
cos 2 φ
2
2
= J (2) I 5 / 2 [ σ ] η 1
Q 2
2
( O 2 + O 2 )sin2 φ
2 O 1
2
=
cos 2 φ
sin 2 φ.
(5 . 4 . 2)
H in (5.2.12) can be ne-
glected. Introducing the magnetostriction parameters C and A via eqn
(2 . 2 . 26 a ), when θ = π/ 2,
O 1
2
We note that
vanishes only as long as
2
γ 1 = C cos 2 φ
A cos 4 φ
(5 . 4 . 3)
γ 2 = C sin 2 φ + 2
A sin 4 φ,
Q ± 4
4
and calculating
,weobtain
1
c γ
B γ 2 J (2) I 5 / 2 [ σ ] η 1
C =
(5 . 4 . 4)
2
c γ
B γ 4 J (4) I 9 / 2 [ σ ] η 6
A =
,
instead of eqn (2 . 2 . 26 b ), including the effects of the elliptical preces-
sion of the moments. The equilibrium conditions allow us to split the
magnetoelastic Hamiltonian into two parts:
H γ (sta) =
i
2
c γ ( γ 1 + γ 2 ) − B γ 2 {Q 2 ( J i ) γ 1 + Q 2
( J i ) γ 2 }
2
( J i ) γ 2 } ,
Q 4 ( J i ) γ 1
Q 4
4
B γ 4 {
(5 . 4 . 5)
depending only on the static strains, and
H γ (dyn) =
i
2
c γ { ( γ 1 γ 1 ) 2 +( γ 2 γ 2 ) 2
}
B γ 2 {
Q 4 } ( γ 1
Q 2 ( J i )
Q 2 }
Q 4 ( J i )
+ B γ 4 {
γ 1 )
γ 2 )
(5 . 4 . 6)
B γ 2 {
} ( γ 2
Q 2
2
Q 2
2
Q 4
4
Q 4
4
( J i )
} −
B γ 4 {
( J i )
Search WWH ::




Custom Search