Environmental Engineering Reference
In-Depth Information
is the usual Bose population-factor, we find to first order in 1 /J :
N
q
= J
a q a q = J (1
1
J z
m ) ,
(5 . 2 . 24)
with
N
q
N
q
1
1
J
1
a q a q
m =
m q
=
and
1
J
( u q α q
v q α +
m q =
v q α q )( u q α q
q )
J u q n q + v q ( n q +1)
1
=
(5 . 2 . 25)
J A q
,
n q + 2
2
1
=
E q
which is positive and non-zero, even when n q =0at T =0.
The second-order contribution to the Hamiltonian is
H 2 =
i
B
1
8 J ( a i a i
+ a i a i )+ C 1 a i a i a i a i
+ a i a i a i a i )
+ C 2 ( a i a i a i a i + a i a i a i a i )+ C 3 ( a i a i a i a i
ij J
( ij ) 2 a i a j a i a j
a i a i a i a j ,
4
a i a j a j a j
(5 . 2 . 26)
with
J 2 2
105 B 6 J (6) cos 6 φ
1
B 2 J (2)
C 1 =
J 2 4
B 6 J (6) cos 6 φ
1
B 2 J (2) + 19 4
(5 . 2 . 27)
C 2 =
1
J 2 1 4
B 6 J (6) cos 6 φ.
C 3 =
H 2 , we find
Introducing the Fourier transforms of the Bose operators in
straightforwardly that
H 2 ]= A q a q + B 1+
4 J a +
1
ih∂a q /∂t =[ a q ,
H
]
[ a q ,
H 1 +
q +
−J
N
k , k
( q )+2 C 1 a k a k a q + k k
1
( q k )+ 2 J
( k )+ 4 J
( k )+ 4 J
,
(5 . 2 . 28)
+ C 2 3 a k a +
k a k a q + k k +4 C 3 a k a +
k a +
k a q + k k + a
q k + k
for the operator [ a q ,
H
], which appears in the equation of motion of,
a q ; a q
for instance
. When the thermal averages of terms due to
H 2
Search WWH ::




Custom Search