Biology Reference
In-Depth Information
68.
Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate
pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from
xylose. Appl Environ Microbiol . 2002;68:1604
1609.
69. Roca C, Nielsen J, Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting
Saccharomyes cerevisiae improves ethanol production. Appl Environ Microbiol . 2003;69:4732
4736.
70. Sonderegger M, Schumperli M, Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose
catabolism in Saccharomyces cerevisiae . Appl Environ Microbiol . 2004;70:2892
2897.
71. Verho R, Londesborough J, Penttila M, Richard P. Engineering redox cofactor regeneration for improved
pentose fermentation in Saccharomyces cerevisiae . Appl Environ Microbiol . 2003;69:5892
5897.
72. Krahulec S, Klimacek M, Nidetzky B. Engineering of a matched pair of xylose reductase and xylitol
dehydrogenase for xylose fermentation by Saccharomyces cerevisiae . Biotechnol J . 2009;4:684
694.
73. Matsushika A, Watanabe S, Kodaki T, et al. Expression of protein engineered NADP
-dependent xylitol
dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae . Appl Microbiol
Biotechnol . 2008;81:243 255.
74. Runquist D, Hahn-Hagerdal B, Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces
cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol . 2010;76:7796 7802.
75. Kim BD, Du J, Eriksen D. Combinatorial design of a highly efficient xylose utilization pathway for cellulosic
biofuels production in Saccharomyces cerevisiae . Appl Environ Microbiol . 2013;79:931 941.
76. Fierobe HP, Bayer EA, Tardif C, et al. Degradation of cellulose substrates by cellulosome chimeras substrate
targeting versus proximity of enzyme components. J Biol Chem . 2002;277:49621 49630.
77. Fierobe HP, Mechaly A, Tardif C, et al. Design and production of active cellulosome chimeras selective
incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem .
2001;276:21257
1
21261.
78. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol: a
review. Bioresour Technol . 2010;101:4775
4800.
79. Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification
and fermentation of cellulose to ethanol. Appl Environ Microbiol . 2010;76:1251
1260.
80. Dueber JE, Wu GC, Malmirchegini GR, et al. Synthetic protein scaffolds provide modular control over
metabolic flux. Nat Biotechnol . 2009;27:753
759.
81. Top value added chemicals from biomass, vol. 1: results of screening for potential candidates from sugars and
synthesis gas. 2004. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf.
82. Walaszek Z, et al. D-glucaric acid content of various fruits and vegetables and cholesterol-lowering effects of
dietary d-glucarate in the rat. Nutr Res . 1996;16:673
60
681.
83. Singh J, Gupta KP. Calcium glucarate prevents tumor formation in mouse skin. Biomed Environ Sci .
2003;16:9
16.
84. Singh J, Gupta KP. Induction of apoptosis by calcium D-glucarate in 7,12- dimethyl benz[a]anthracene-exposed
mouse skin. J Environ Pathol Toxicol Oncol . 2007;26:63 73.
85. Moon TS, Dueber JE, Shiue E, Prather KLJ. Use of modular, synthetic scaffolds for improved production of
glucaric acid in engineered E. coli . Metab Eng . 2010;12:298 305.
86. Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of
1,4-butanediol. Nat Chem Biol . 2011;7:445 452.
87. Kraus GA. Synthetic methods for the preparation of 1,3-propanediol. Clean . 2008;36:648 651.
88. Forage RG, Foster MA. Glycerol fermentation in klebsiella-pneumoniae functions of the coenzyme-b12-
dependent glycerol and diol dehydratases. J Bacteriol . 1982;149:413 419.
89. Homann T. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol
Biotechnol . 1990;33:121
126.
90. Barbirato F. Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during
fermentation of glycerol by Enterobacter agglomerans . Appl Environ Microbiol . 1996;62:4405
4409.
91. Forsberg CW. Production of 1,3-Propanediol from glycerol by Clostridium acetobutylicum and other Clostridium
species. Appl Environ Microbiol . 1987;53:639
643.
92. Hartlep MH, Hussmann WH, Prayitno NP, Meynial-Salles IM-S, Zeng APZ. Study of two-stage processes for
the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol . 2002;60:60
66.
93. Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin
Biotechnol . 2003;14:454
459.
94. Ma Z, Rao Z, Xu L, et al. Expression of dha operon required for 1,3-PD formation in Escherichia coli and
Saccharomyces cerevisiae . Curr Microbiol . 2010;60:191
198.
95. Li R, Zhang H, Qi Q. The production of polyhydroxyalkanoates in recombinant Escherichia coli . Bioresour
Technol . 2007;98:2313
2320.
Search WWH ::




Custom Search