Biology Reference
In-Depth Information
27. Roszak AW, Howard TD, Southall J, et al. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas
palustris . Science . 2003;302:1969
1972.
28. Wraight C, Gunner M. The acceptor quinones of purple photosynthetic bacteria
structure and spectroscopy.
405.
29. Handke P, Lynch SA, Gill RT. Application and engineering of fatty acid biosynthesis in Escherichia coli for
advanced fuels and chemicals. Metab. Eng . 2011;13:28
The Purple Phototrophic Bacteria . 2008:379
37.
30. Tehrani A, Beatty JT. Effects of precise deletions in rhodobacter sphaeroides reaction center genes on steady-
state levels of reaction center proteins: a revised model for reaction center assembly. Photosyn Res .
2004;79:101
108.
31. Miroux B, Walker JE. Over-production of proteins in Escherichia coli : mutant hosts that
allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol .
1996;260:289
298.
32. Farchaus JW, Gruenberg H, Oesterhelt D. Complementation of a reaction center-deficient Rhodobacter
sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive
phenotype. J Bacteriol . 1990;172:977 985.
33. Kwon SSJ, de Boer AL, Petri R, Schmidt-Dannert C. High-level production of porphyrins in metabolically
engineered Escherichia coli : systematic extension of a pathway assembled from overexpressed genes involved in
heme biosynthesis. Appl Environ Microbiol . 2003;69:4875 4883.
34. Kwon SJ, Petri R, DeBoer AL, Schmidt-Dannert C. A high-throughput screen for porphyrin metal chelatases:
application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis. Chem Bio Chem .
2004;5:1069 1074.
35.
Johnson ET, Schmidt-Dannert C. Characterization of three homologs of the large subunit of the magnesium
chelatase from Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX
methyltransferase. J Biol Chem . 2008;283:27776
27784.
36. Ouchane S, Steunou A-S, Picaud M, Astier C. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester
cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J Biol Chem .
2004;279:6385
6394.
37. Lee PC, Momen AZ, Mijts BN, Schmidt-Dannert C. Biosynthesis of structurally novel carotenoids in Escherichia
coli . Chem Biol . 2003;10:453
462.
38. Mijts BN, Lee PC, Schmidt-Dannert C. Identification of a carotenoid oxygenase
synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution. Chem Biol .
2005;12:453
315
460.
39. Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: their properties and
paradoxes. Bioessays . 2008;30:1084
1095.
40. Kerfeld CA, Heinhorst S, Cannon GC. Bacterial microcompartments. Annu Rev Microbiol . 2010;64:391
408.
41. Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein-based organelles in bacteria:
carboxysomes and related microcompartments. Nat Rev Microbiol . 2008;6:681
691.
42. Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C. Engineered protein nano-compartments
for targeted enzyme localization. PLoS ONE . 2012;7:e33342.
43. Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA. Modularity of a carbon-fixing protein
organelle. Proc Natl Acad Sci USA . 2011;109:478 483.
44. Parikh MR, Greene DN, Woods KK, Matsumura I. Directed evolution of RuBisCO hypermorphs through
genetic selection in engineered E. coli . Protein Eng. Des Sel . 2006;19:113 119.
45. Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO 2
acquisition by the CBB cycle. J Exp Bot . 2008;59:1525 1541.
46. Atomi H. Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng . 2002;94:497
505.
47. Berg IA, Kockelkorn D, Buckel W, Fuchs GA. 3-Hydroxypropionate/4-hydroxybutyrate autotrophic carbon
dioxide assimilation pathway in Archaea. Science . 2007;318:1782
1786.
48. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in shewanella: energetics of
reversing the mtr pathway for reductive metabolism. PLoS ONE . 2011;6:e16649.
49. McConnell I, Li G, Brudvig GW. Energy conversion in natural and artificial photosynthesis. Chem Biol .
2010;17:434
447.
50. Kalyanasundaram K, Graetzel M. Artificial photosynthesis: biomimetic approaches to solar energy conversion
and storage. Curr Opin Biotechnol . 2010;21:298
310.
51. Linsebigler AL, Lu G, Yates Jr JT. Photocatalysis on TiO 2 surfaces: principles, mechanisms, and selected results.
Chem Rev . 1995;95:735
758.
Search WWH ::




Custom Search