Biology Reference
In-Depth Information
89. Goerke AR, Loening AM, Gambhir SS, Swartz JR. Cell-free metabolic engineering promotes high-level
production of bioactive gaussia princeps luciferase. Metab Eng . 2008;10(3-4):187
200.
90. Park CG, Kim TW, Oh IS, Song JK, Kim DM. Expression of functional Candida antarctica lipase B in a cell-free
protein synthesis system derived from Escherichia coli . Biotechnol Prog . 2009;25(2):589
593.
91. Betton J-M, Miot M. Cell-free production of membrane proteins in the presence of detergents . Cell-Free Protein Synth .
Wiley-VCH Verlag GmbH & Co. KGaA; 2008:165
178.
92. Gilbert GP. Detergents for the stabilization and crystallization of membrane proteins. Methods . 2007;41
(4):388
397.
93. Pedersen A, Hellberg K, Enberg J, Karlsson BG. Rational improvement of cell-free protein synthesis.
New Biotechnol . 2011;28(3):218
224.
94. Park K-H, Billon-Denis E, Dahmane T, Lebaupain F, Pucci B, Breyton C, et al. In the cauldron of cell-free
synthesis of membrane proteins: playing with new surfactants. New Biotechnol . 2011;28(3):255
261.
95. Hovijitra NT, Wuu JJ, Peaker B, Swartz JR. Cell-free synthesis of functional aquaporin Z in synthetic
liposomes. Biotech Bioeng . 2009;104(1):40 49.
96. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel.
Nat Mater . 2006;5(10):797 801.
97. Park N, Kahn JS, Rice EJ, Hartman MR, Funabashi H, Xu J, et al. High-yield cell-free protein production from
P-gel. Nat Protocols . 2009;4(12):1759 1770.
98. Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics .
2010;10(4):717 730.
99. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, et al. Self-assembling protein
microarrays. Science . 2004;305(5680):86
90.
100. Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, et al. Human protein factory for
converting the transcriptome into an in vitro-expressed proteome. Nat Methods . 2008;5(12):1011
1017.
101. Zahnd C, Amstutz P, Pluckthun A. Ribosome display: selecting and evolving proteins in vitro that specifically
bind to a target. Nat Meth . 2007;4(3):269
279.
102. Zhu Y, Power B. Lab-on-a-chip in vitro compartmentalization technologies for protein studies. In: Werther M,
Seitz H, eds. Protein
Protein Interaction . Berlin/Heidelberg: Springer; 2008:81
114.
103. Sepp A, Choo Y. Cell-free selection of zinc finger DNA-binding proteins using in vitro compartmentalization.
J Mol Biol . 2005;354(2):212
299
219.
104. Fallah-Araghi A, Baret JC, Ryckelynck M, Griffiths AD. A completely in vitro ultrahigh-throughput droplet-
based microfluidic screening system for protein engineering and directed evolution. Lab Chip . 2012;12
(5):882
891.
105. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C, et al. Ultrahigh-throughput screening in drop-
based microfluidics for directed evolution. Proc Natl Acad Sci USA . 2010;107(9):4004
4009.
106. Wada A, Sawata SY, Ito Y. Ribosome display selection of a metal-binding motif from an artificial peptide
library. Biotech Bioeng . 2008;101(5):1102 1107.
107. Yan X, Xu Z. Ribosome-display technology: applications for directed evolution of functional proteins.
Drug Discov Today . 2006;11(19-20):911 916.
108. Zahnd C, Pecorari F, Straumann N, Wyler E, Pluckthun A. Selection and characterization of Her2 binding-
designed ankyrin repeat proteins. J Biol Chem . 2006;281(46):35167 35175.
109. Hecht MH, Das A, Go A, Bradley LH, Wei Y. De novo proteins from designed combinatorial libraries. Protein
Sci . 2004;13(7):1711 1723.
110. Ohta A, Yamagishi Y, Suga H. Synthesis of biopolymers using genetic code reprogramming. CurrOpinChem
Biol . 2008;12(2):159 167.
111. Wang L, Xie J, Schultz PG. Expanding the genetic code. Annu Rev Biophys Biomol Struct . 2006;35(1):225
249.
112. Xie J, Schultz PG. A chemical toolkit for proteins
an expanded genetic code. Nat Rev Mol Cell Biol . 2006;7
782.
113. Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G. High-yield cell-free protein synthesis for site-
specific incorporation of unnatural amino acids at multiple sites. Biochem Biophys Res Commun . 2012;418
(4):652
(10):775
656.
114.
Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, et al. RF1 knockout allows ribosomal
incorporation of unnatural amino acids at multiple sites. Nat Chem Biol . 2011;7(11):779
786.
115. Buchner E. Alkoholischegahrung ohnehefezellen. BerChemGes . 1897;30:117
124.
116. Swartz JR. Transforming biochemical engineering with cell-free biology. AIChE Journal . 2012;58(1):5
13.
117. Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S. Exploiting cell-free systems: implementation
and debugging of a system of biotransformations. BiotechBioeng . 2010;106(3):376
389.
Search WWH ::




Custom Search