Biology Reference
In-Depth Information
41. Tantillo DJ, Chen J, Houk KN. Theozymes and compuzymes: theoretical models for biological catalysis. Curr
Opin Chem Biol . 1998;2:743
750.
42. Zhang X, DeChancie J, Gunaydin H, et al. Quantum mechanical design of enzyme active sites. J Org Chem .
2008;73:889
899.
43. Hellinga HW, Richards FM. Construction of new ligand binding sites in proteins of known structure. I.
Computer-aided modeling of sites with pre-defined geometry. J Mol Biol . 1991;222:763
785.
44. Zanghellini A, Jiang L, Wollacott AM, et al. New algorithms and an in silico benchmark for computational
enzyme design. Protein Sci . 2006;15:2785
2794.
45. Malisi C, Kohlbacher O, Höcker B. Automated scaffold selection for enzyme design. Proteins . 2009;77:74
83.
46. Miller BG. The mutability of enzyme active-site shape determinants. Protein Sci . 2007;16(9):1965
1968.
47. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic residues in enzyme active sites. J Mol
Biol . 2002;324:105
121.
48. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold
with atomic-level accuracy. Science . 2003;302:1364 1368.
49. Röthlisberger D, Khersonsky O, Wollacott AM, et al. Kemp elimination catalysts by computational enzyme
design. Nature . 2008;453:190 195.
50. Privett HK, Kiss G, Lee TM, et al. Iterative approach to computational enzyme design. Proc Natl Acad Sci USA .
2012;109:3790 3795.
51. Jiang L, Althoff EA, Clemente FR, et al. De novo computational design of retro-aldol enzymes. Science .
2008;319:1387 1391.
52. Siegel JB, Zanghellini A, Lovick HM, et al. Computational design of an enzyme catalyst for a stereoselective
bimolecular Diels-Alder reaction. Science . 2010;329:309
313.
53. Dahiyat BI. In silico design for protein stabilization. Curr Opin Biotechnol . 1999;10:387
390.
54. Gao J, Bosco DA, Powers ET, Kelly JW. Localized thermodynamic coupling between hydrogen bonding and
microenvironment polarity substantially stabilizes proteins. Nat Struct Mol Biol . 2009;16:684
690.
55. Wintrode PL, Arnold FH. Temperature adaptation of enzymes: lessons from laboratory evolution . Evolutionary Protein
Design . San Diego, CA: Academic Press; 2001 [cited 2012 Jan 30]. pp. 161
225.
56. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL. Structural adaptations of the cold-active citrate
synthase from an Antarctic bacterium. Structure . 1998;6:351
122
361.
57. Malakauskas SM, Mayo SL. Design, structure and stability of a hyperthermophilic protein variant. Nat Struct
Mol Biol . 1998;5:470
475.
58. Dantas G, Kuhlman B, Callender D, Wong M, Baker D. A large scale test of computational protein design:
folding and stability of nine completely redesigned globular proteins. J Mol Biol . 2003;332:449
460.
59. Borgo B, Havranek JJ. Automated selection of stabilizing mutations in designed and natural proteins. Proc Natl
Acad Sci USA . 2012;109:1494
1499.
60. Dahiyat BI, Mayo SL. De novo protein design: fully automated sequence selection. Science . 1997;278:82 87.
61. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with
similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol .
1997;268:209 225.
62. Hill RB, Raleigh DP, Lombardi A, DeGrado WF. De novo design of helical bundles as models for
understanding protein folding and function. Acc Chem Res . 2000;33:745 754.
63. Zaccai NR, Chi B, Thomson AR, et al. A de novo peptide hexamer with a mutable channel. Nat Chem Biol .
2011;7:935 941.
64.
Jäckel C, Kast P, Hilvert D. Protein design by directed evolution. Annu Rev Biophys . 2008;37:153 173.
Search WWH ::




Custom Search